Microproceséor 3-83 Instruction Set of 8086/8088 and ALP

C:\tasm\tasm s_btadd.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s_btadd.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 410k

C:\tasm\tlink s_bta4dd.obj

Turbo Link Version 5.0 Copyright (c) 1992 Borland International
C:\tasm\s_btadd

10940

3.17.2 Routine to Convert ASCII to Binary

When we accept decimal number from keyboard we get ASCII code of each decimal
digit. This information from the keyboard must be converted from ASCII to binary. When
a single key is pressed conversion can be achieved by subtracting 30H. However, when
more than one key is typed conversion from ASCII to binary requires 30H to be
subtracted, but there is additional step. After subtracting 30H, the number is added to the

result after the prior result is first multiplied by 10.
-~ 256 Decimal — 100H

Keystroke Keyinput SUB 30H Calculations
2 ~—>» 32H —— 32H-30H — 02
x 0A Multiply by 10

14H
+

S —= 3H —— 35H-30H — 05H Add next digit
19H
x 0AH Multiply by 10

FAH
+

6 —= 36H — 36H-30H —s 06H Add next digit
100H -— Result

256 Decimal —= 100H

Microprocessor 3-84

Instruction Set of 8086/8088 and ALP

Let us see the algorithm for converting number from ASCII to binary code.

Algorithm

1. Save contents of all registers which are used in the routine.

2. Make binary result = 0.

3. Subtract 30H from the character typed on the keyboard to convert it to BCD.

4. Multiply the result by 10, and then add the new BCD digit.

5. Repeat steps 2 and 3 until the character typed is not an ASCII coded number.

6. Restore register contents.

Save register contents

1

Result=0

Flowchart

- |

L

Get the key input

Check if

key is in No

between
0-9

Yes

Convert it to BCD
(Sub 30H) digit

1

Save result

Result = Result x 10 + BCD digit

{

|

Restore register contents

Microprocessor

3-85 Instruction Set of 8086/8088 and ALP

Routine : Convert BCD number from keyboard to its Hex equivalent.
;i Routine to convert ASCII coded decimal from keyboard into its HEX

equivalent

ATB PROC NEAR

PUSH CX ;

PUSH BX

PUSH AX

MOV CX, 10

MOV BX, 0
BACK: MOV AH, 01H

INT 21H

CMP AL,’0’

JB SKIP ;

CMP AL,’'9’

JA SKIP

SUB AL, 30H ;

PUSH AX ;

MOV AX, BX

MUL CX

MOV BX, AX

POP AX

MOV AH, O0OH

ADD BX, AX

JMP BACK
SKIP: MOV NUMBER, BX

POP AX

POP BX

POP CX

RET

ENDP

LYIE TR

~

Ne Ne N

e Ne N N

Sample Program

; Sample program to convert
its HEX equivalent

.MODEL SMALL

.DATA

NUMBER DW ? ;
.CODE

START: MOV AX, @DATA ;

MOV DS, AX ;

CALL ATB ;

MOV AH, 4CH

Save registers

Load 10 decimal in CX
Clear result

[Read key

with echo]

Jump if below ‘0’

Jump if above ‘9’
Convert to BCD
Save digit

Multiply previous result by 10
Get the result in BX
Retrieve digit

Add digit value to result
Repeat

Save the result in NUMBER
Restore registers

ASCII coded decimal from keyboard into

Define number

[Initialize

data segement]

convert ASCII coded decimal from
keyboard into its HEX equivalent

TExit to

Microprocessor 3-86 Instruction Set of 8086/8088 and ALP

C:\tasm\tasm s_atb.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s _atb.asm
Error messages: None
Warning messages: None
Passes: 1
-Remaining memory: 410k

C:\tasm\tlink s_atb.obj

Turbo Link Version 5.0 Copyright (c) 1992 Borland International
C:\tasm\s_atb

1234

3.17.3 Routine to Read Hexadecimal Data

We know that hexadecimal numbers range from 0 to 9 and from A to F. The keyboard
gives ASCII codes for these hexadecimal numbers. It gives 30H to 39H for numbers 0 to 9
and gives 41H to 46H for A to F letters or gives 61H to 66H for a to f letters. Hence, to
convert ASCII input from keyboard to corresponding hexadecimal number we have to first
check whether it is a number or letter and then if letter whether it is a small letter or
capital letter and accordingly convert it into hexadecimal number.

Microprocessor 3-87 Instruction Set of 8086/8088 and ALP

BX
BH BL
15 1211 87 43 0
09
[ofofofo] Sub30H| |
A-F Key
+ AL S—ub 37H — InE|>ut
ot
|°|°|°|H| Subs7H| ~
shift left4-bits [0 f o | H] o |=—0 e .
Sub 30H
" Key
+ AL ‘—< éaﬁ—;ﬁ — ingut
a-f
Lofo]n[H] \ Isubs7h| —
shiftteft4-bits { 0 [H [H [0 |=—o0 (§u—g-%-l -
AF Key
¥ AL = < SwparH| [M
a-f
I]HlHlH] | [Sub 57H
Shift left 4-bits [H | H | H | 0 |=—0 09 | ___
Sub 30H
. K
* ofHla Suf; §7H - i"EL{t
a-f
[H]H[H]H] Subs7H| —

Note : H represents any hexadecimal digit (0-F).
Algorithm

1. Save registers
2. Make result = 0

. Get the ASCII code of character from keyboard and
= Subtract 30H from it if character is 0 - 9

= Subtract 37H from it if character is A - F

= Subtract 57H from it if character a - f
- Shift the result by 4-bits and add digit to pack binary digits.
- Repeat steps 2 and 3 four times to get 4-digit hex number.

w

S U1 W

- Restore registers.

Microprocessor

Instruction Set of 8086/8088 and ALP

Flowchart

Initialize iteration
counter

1

Result =0

T

Get the keycode

Yes

!

rKeyoode = Keycode-30H J

“ €es

r Keycode = Keycode—-37H

I Keycode = Keycode—57HJ

If keycode
is between
30H-39H

If keycode
is between
41H-46H

If keycode
is between
61H-66H

Shift result to left by four bits

'

Add digit i.e. keycode
into result

1

Decrement iteration count

If
iteration count
=0

No

Microprocessor 3-89 Instruction Set of 8086/8088 and ALP

Routine : Reading hexadecimal data

Returns : Hex number in variable number
; Routine to read 4-digit Hex number from the keyboard

R _HEX PROC NEAR

PUSH CX ; Save registers

PUSH BX

PUSH AX

PUSH SI

MOV CL, 04 ; Load shift count

MOV SI, 04 ; Load iteration count

MOV BX, O ; Clear result
BACK: MOV AH, 01 ; [Read a key

INT 21H ; with echol

CALL CONV ; convert to binary

SHL BX, CL ; {pack four

ADD BL, AL ; binary digits

DEC SI ; as 16-bit

JNZ BAC ; number]

MOV NUMBER, BX ; Save result at NUMBER

POP SI ; Restore registers

POP AX

POP BX

POP CX

RET

ENDP

;i The procedure to convert content3 of AL into hexadecimal
equivalent

CONV PROC NEAR

CMP AL, ' 9’
JBE SUBTRA30 ; If number is between 0 through 9
CMP AL,’a’
JB SUBTRA37 ; If letter is uppercase
SUB AL, S57H ; Subtract 57B if letter is lowercase
JMP LAST1
SUBTRA30: SUB AL, 30H ; Convert number
JMP LAST1
SUBTRA37: SUB AL, 37H ; Convert uppercase letter
LAST1: RET
CONV ENDP

Sample Program
; Sample example to read 4-digit Hex number from the keyboard

.MODEL SMALL ; Select small model
.STACK 100 ; Initialise stack

Microprocessor

3-90 Instruction Set of 8086/8088 and ALP

.DATA
NUMBER DW?

.CODE

START:MOV AX, @DATA
MOV DS, AX
CALL R_HEX
MOV AH, 4CH

INT 21H

~

e W we

~

~

Start data segment
Define NUMBER
Start code segment
[Initialize

data segment]
Read 4-digit hex number
[Exit to

DOS]

Microprocessor 3-91 Instruction Set of 8086/8088 and ALP

C:\tasm\tasm s rdhex.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s _rdhex.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 410k

C:\tasm\tlink s rdhex.obj
Turbo Link Version 5.0 Copyright (c) 1992 Borland International
C:\tasm\s_rdhex

12AB

3.17.4 Routine to Display Hexadecimal Data

To display hexadecimal data we have to first unpack each digit (nibble) in the given
number. Then by adding 30H to digit having number between 0 to 9 and by adding 37H
to digit having letter between A to F we can get the ASCII equivalent of given
hexadecimal number. This can be achieved by rotating number left (nibble by nibble) and
adding 30H or 37H into it. By rotating left we can display left most digit (MSD) first.

16-bit
A
G5 12 11 8 7 43 0
Display
r—e
- 4 < * |30Hor37H| —> Digit1 (MSD)
\
- < < + |30Hor37H| —> Digit2
_ - < <l + [3oHor37H| —> Digit3
i
-t -— - +]30H or 37H i Digit 4 (LSD)
—————

Nibble

Microprocessor 3-92 Instruction Set of 8086/8088 and ALP

Algorithm
1. Save registers.
2. Get the number and unpack digit from it.
3. Add 30H if digit is 0 - 9 or add 37H if digit is A - F to get the ASCII code of digit.
4. Display digit.
5. Repeat steps 2, 3 and 4.
6. Restore registers.

Flowchart

Save registers

!

Get the number

1

Initialize digit count

i-
Unpack nibble

Is digit
between 0-9

Add 30H

Display digit

Restore registers

Microprocessor 3-93 Instruction Set of 8086/8088 and ALP

Routine
;7 Routine to display 4-digit hex number in AX

D_HEX PROC NEAR

PUSH DX
PUSH CX
PUSH AX
MOV CL, 04H
MOV CH, O04H

Save registers

~~

Load rotate count
Load digit count

e wo

BACK: ROL AX, CL ; Rotate digits
PUSH AX ; Save contents of AX
AND AL, OFH ; [Convert
CMP AL, 9 ; number
JBE ADD30 ; to
ADD AL, 37H ; its
JMP DISP ; ASCII
ADD30:
ADD AL, 30H ; equivalent]
DISP: MOV AH, 02H
MOV DL, AL ; [Display the
INT 21H ; number]
POP AX ; Restore contents of AX
DEC CH ; Decrement digit count
JNZ BACK ; If not zero repeat
POP AX ; Restore registers
POP CX
POP DX
RET
ENDP

Sample Program
; Sample program displays 4-digit hex number in AX

-MODEL SMALL

.STACK 100

.CODE
MOV AX, 12ABH ; Load AX with test data
CALL D_HEX ; Call procedure
MOV AH, 4CH ; [Exit

INT 21H to DOS]

-

Microprocessor 3-94 Instruction Set of 8086/8088 and ALP

C:\tasm\tasm s_d_hex.asm
Turbo Assembler ~Version 3.0 Copyright (c) 1988, 1991 Borland

International

Assembling file: s_d_hex.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 410k

C:\tasm\tlink s_d_hex.obj
Turbo Link Version 5.0 Copyright (c) 1992 Borland International

C:\tasm\s_d_hex
12AB

3.17.5 Lookup Tables for Data Conversions

For certain data conversion, when number of possible data conversions are small in
numbers then lookup tables are often used to convert data from one form to another. For
example, for conversion of BCD to 7-segment code there are only 10 possible conversions.
A lookup table is nothing but a array form in the memory as a list of data that is
referenced by a procedure to perform conversions.

Microprocessor 3-95 Instruction Set of 8086/8088 and ALP

Converting from BCD to 7-segment code

Let us see how to perform BCD to 7-segment code conversion. For BCD to 7-segment
code conversion a lookup table contains the 7-segment codes for the numbers 0 to 9. These
codes are determined from Fig. 3.25. The 7-segment display shown in Fig. 3.25 uses active
high (logic 1) input to light a segment. The code is formed by placing the a segment in the
bit position 0 and the g segment in the bit position 6. It position 7 is kept 0.

C 3
f b
& Code formation byte
€ ¢ 0 g f e d c b a
d

Fig. 3.25 7-segment code formation

A look-up table can be stored in the program memory (code segment) or in the data
memory (data segment). Let us see the program which uses lookup table stored in the
data memory to convert BCD code into its 7-segment equivalent code.

Program statement : Write an assembly language program to convert BCD to 7-segment
code.

Program
.MODEL SMALL
.DATA
TABLE DB 3FH ;0
DB 06H ;1
DB S5BH ;2
DB 4FH ; 3
DB 66H ; 4
DB 6DH)
DB 7DH ; 6
DB 07H ;7
DB 7FH ; 8
DB 6FH ;9
.CODE
START: MOV AX, @DATA ; [Initialize
MOV DS, AX ; Data segment]
MOV AL, 08H ; Loads AL with any BCD digit,

; for example 8, to be converted to
; 7-segment code

MOV BX,OFFSET TABLE ; Load BX with the offset of
; starting address of lookup table

Microprocessor 3-96 Instruction Set of 8086/8088 and ALP

XLAT TABLE ; Copy byte from address pointed by
; [BX + AL] back into AL

MOV AH, 4CH ; [Bxit

INT 21H ; to DOS]

END START

END

Note : When look-up table is stored in the code segment we have to include a segment
override prefix in the XLAT instruction because XLAT instruction by default access, byte
from data segment. To access byte from code segment we have modify XLAT instruction
as XLAT CS : TABLE.

Logk-up table to access ASCII data

Many program require that numeric codes to be converted to ASCII character strings.
For example, if we need to display month in the text format we should use lookup table to
reference the ASCII coded months of the year. Let us see program to access ASCII string
corresponding to given month of the year using look-up table stored in the data segment.

Program statement : Write an assembly language program to access ASCII string
corresponding to given month of the year.

Program:

.MODEL SMALL

.DATA

DPOINTER DW JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,

DW OCT, NOV, DIC

JAN DB ‘JANUARY $’
FEB DB ‘FEBRUARY §’
MAR DB ‘MARCH §’
APR DB ‘APRIL S’
MAY DB ‘MAY §7
JUN DB ‘JUNE §$’
JUL DB ‘JULY $'
AUG DB ‘AUGUST §$’
SEP DB ‘SEPTEMBER $’
OCT DB ‘OCTOBER $'
NOV DB ‘NOVEMBER $’
DIC DB ‘DECEMBER $'

.CODE

START: MOV AX,Q DATA ; [Initialize
Mov DS, AX ; Data segment]
. MOV AL, 07H ; Loads AL with any month in its

numerical value
MOV S$I, OFFSET DPOINTER ; Address table find month of year

MOV AH,00H ; [Multiply the AL by 2
ADD AX, AX ~ ; to point to correct
ADD SI, AX* ; month of the year]
MOV DX, [SI] ; Get month of year

MOV AH, 09H ; [Display month

Microprocessor 3-97 Instruction Set of 8086/8088 and ALP

INT 21H ; of year string]
MOV AH, 4CH ; [Exit

INT 21H ; to DOS]

END START

END

3.18 Procedures

Whenever we need to use a group of instructions several times throughout a program
there are two ways we can avoid having to write the group of instructions each time we
want to use them. One way is to write the group of instructions as a separate procedure.
We can then just CALL the procedure whenever we need to execute that group of
instructions. For calling the procedure we have to store the return address onto the stack.
This process takes some time. If the group of instructions is big enough then this overhead
time is negligible with respect to execution time. But if the group of instructions is too
short, the overhead time and execution time are comparable. In such cases, it is not
desirable to write procedures. For these cases, we can use macros. Macro is also a group of
instructions. Each time we “CALL” a macro in our program, the assembler will insert the
defined group of instructions in place of the “CALL”. An important point here is that the
assembler generates machine codes for the group of instructions each time macro is called.
So there is not overhead time involved in calling and returning from a procedure. The
disadvantage of macro is that it generates inline code each time when the macro is called
which takes more memory. In this section we discuss the procedures.

From the above discussions, we know that the procedure is a group of instructions
stored as a separate program in the memory and it is called from the main program
whenever required. The type of procedure depends on where the procedure is stored in
the memory. If it is in the same code segment where the main program is stored then it is
called near procedure otherwise it is referred to as far procedure. For near procedure
CALL instruction pushes only the IP register contents on the stack, since CS register
contents remains unchanged for main program and procedure. But for far procedures
CALL instruction pushes both IP and CS on the stack. Let us see the detail description and
examples of CALL instruction to enter the procedure and RET instruction to return from
the procedure.

CALL Instruction :

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which is in the same code segment as the CALL instruction. When the 8086 executes a
near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads IP with the offset of the first
instruction of the procedure in same segment.

A far CALL is a call to a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack

Microprocessor 3-98 Instruction Set of 8086/8088 and ALP

pointer by two and copies the contents of the CS register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. Finally, it loads CS with the segment base of the segment which contains the
procedure and IP with the offset of the first instruction of the procedure in that segment.

Examples :
Direct within segment (near)
CALL PRO ; PRO is the name of the procedure.

; The assembler determines displacement of pro
; from the instruction after the CALL and codes
; this displacement in as part of the instruction.

Indirect within-segment (near)

CALL CX ; CX contains, the offset of the first instruction
; of the procedure. Replaces contents of IP with
; contents of register CX.

Indirect to another segment (far)

CALL DWORD PTR [BX] ; New values for CS and IP are fetched from four
; memory locations in DS. The new value for CS
; is fetched from [BX] and [BX + 1], the new IP
; is fetched from [BX + 2] and [BX + 3].

RET Instruction :

The RET instruction will return execution from a procedure to the next instruction
after the CALL instruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL instruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure is a far procedure (in a different code segment from the CALL
instruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack. After the code
segment word is popped off the stack, the stack pointer is again incremented by two.
These words/word are the offset of the next instruction after the CALL. So 8086 will fetch
the next instruction after the CALL.

A RET instruction can be followed by a number, for example, RET 4. In this case the
stack pointer will be incremented by an additional four addresses after the IP or the IP
and CS are popped off the stack. This form is used to increment the stack pointer up over
parameters passed to the procedure on the stack.

Flags : The RET instruction affects no flags.

Microprocessor 3-99 Instruction Set of 8086/8083 and ALP

3.18.1 Reentrant Procedure

In some situations it may happen that procedurel is called from main program,
procedure? is called from procedurel and procedurel is again called from procedure2. In
this situation prografh execution flow reenters in the procedurel. This type of procedures
are called reentrant procedures. The flow of program execution for reentrant procedure is
shown in Fig. 3.26.

PROCEDURE 2
MAINLINE PROCEDURE 1

CALL CALL
PROCEDURE 1&~"PROCEDURE 2 &f PROCEDURE 14
[}
NEXT MAINLINE ! RETURN g\
INSTRUCTION .
AFTER CALL

RETURN TO
MAIN PROGRAM -.

Fig. 3.26 Flow of program execution for reentrant procedure

3.18.2 Recursive Procedure

A recursive procedure is a procedure which calls itself. Recursive procedures are used
to work with complex data structures called trees. If the procedures is called with N
(recursion depth) = 3. Then the n is decremented by one after each procedure CALL and
the procedure is called until n = 0. Fig. 3.27 shows the flow diagram and pseudo-code for
recursive procedure.

PROCEDURE PROCEDURE PROCEDURE
MAINLINE RECURSWE RECURSIVE RECURSIVE

CALL
RECURSIVE

NEXT MAINLINE
INSTRUCTION

PROCEDURE RECURSIVE RET RET RET

IF N=0

DECREMENT N
CALL RECURSIVE

ELSE
RETURN

Fig. 3.27 Flow diagram and pseudo-code for recursive procedure

Microprocessor 3-100 Instruction Set of 8086/8088 and ALP

3.19 Macro

Macro is a group of instructions. The macro assembler generates the code in the
program each time where the macro is ‘called’. Macros can be defined by MACRO and
ENDM assembler directives. Creating macro is very similar to creating a new opcode that
can be used in the program, as shown below.

Example : Macro definition for initialization of segment registers.

INIT MACRO ; Define macro

MOV AX, @data ;

MOV DS ; Body of macro definition
MOV ES, AX ; ,

ENDM ; End macro

It is important to note that macro sequences execute faster than procedures because
there are no CALL and RET instructions to execute. The assembler places the macro
instructions in the program each time when it is invoked. This procedure is known as

Macro expansion.

Comparison of Procedure and Macro

Sr. No. Procedure Macro

1. Accessed by CALL and RET instruction Accessed during assembly with name given
during program execution. to macro when defined.

2. Machine code for instructions is put oniy Machine code is generated for instructions
once in the memory. each time when macro is called.
With procedures less memory is required. With macros more memory is required.

4. Parameters can be passed in registers, Parameters passed as part of statement
memory locations, or stack. which calls macro.

Table 3.8

Passing Parameters in Macro

In Macro, parameters are passed as a part of statement which calls Macro.

Example :
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

MOV AH, OSH
LEA MESSAGE

INT 21H
ENDM ;End macro
DATA
MES1 DR 10, 13, 'Student Name : $'
MES2 DB 10, 13, 'Student Address : $'
.CODE
START: MOV AX, Q@data ; [Initialize

MOV DS, AX ; data segment]

Microprocessor 3-101 Instruction Set of 8086/8088 and ALP

PROMPT MES1 ; Display MES1
PROMPT MES?2 ; Display MES2
MOV AH, 4CH ; Return to DOS
INT 21H

END START

The above example shows that parameters can be passed in macro with the help of
dummy argument. Argument tells the assembler to match its name with any occurrence of
the same name in the macro body. For example the dummy argument MESSAGE also
occurs in the LEA instruction. The macro instruction “PROMPT MES1" passes the MES1 as
a parameter and macro accepts that as an argument.

Local Variables in a Macro

Body of the Macro can use local variables. A local variable defined in the Macro is
available in the Macro, however it is not available outside the Macro. To define a local
variable, LOCAL directive is used. Example shows how local variable is used as a jump
address. If this jump address is not defined as a local, the assembler give an error message
on the second and subsequent attempts to use the Macro.

Example

DISPLAY MACRO A ; Displays ASCII character in uppercase
LOCAL J LABEL; Defines J _LABEL as local
PUSH DX
CMP AL,'Z'

JBE J_LABEL ; Check if uppercase

SUB AL, 20H ; Convert to uppercase
J _LABEL: MOV DL,AL

MOV AH, 02H

INT 21H

POP DX

ENDM

The above Macro accepts ASCII code for character. (A-Z or a-z). If it is for lowercase
character, Macro converts it to uppercase character and displays the uppercase character
on video screen.

It is important to note that local variable or variables must be defined using LOCAL
directive immediately after MACRO directive.

3.20 Instruction Formats

The instruciions of 8086 vary from 1 to 6 bytes in length. Fig. 3.28 shows the
instruction formats for 1 to 6 bytes instruction for each instruction format first field is the
operation code field, commonly known as opcode field. Opcode field indicates the type of
operation to be performed by the processor. The other field in the instruction format is
operand field. The operand field may consists of source/destination operand, source
operand address, destination operand address or next instruction address. The operand
and the relative address of the operand (displacement) may be either 8-bit or 16-bit long
depend on the instruction and its addressing mode.

Microprocessor 3-102 Instruction Set of 8086/8088 and ALP

One byte instruction - implied operands

One byte instruction register mode

[Gpeode] Fe]

Register to register

[OpcodeJ [11 IRegIR/M]

Register to/ from memory with no displacement

R I I A)

Register to/ from memory with displacement (8-bit)

[Opcose | [Mod[Reg[rRm] [Dise |

Register to/ from memory with displacement (16-bit)

[OpcodeJ [Mod | Reg I R/M] IEw-order diﬂ Wigh-order dls;ﬂ

Immediate operand to register (8-bit)

[Opcode | [11]opcodefRM] | Operand |

Immediate operand to register (16-bit)

l Opcode l F1 IOpcodel RM Iav-order operangl IHigh-order operand

Immediate operand to memory with 16-bit displacement

[Opcode | [Mod[Opcode [RiM| |Low-order Disp| [High-order Disp | |Low-order operand] [High-order operand |

Fig. 3.28 Sample 8086 instruction formats

The opcode and the addressing mode is specified using first two bytes of an
instruction. The opcode/addressing mode byte(s).

The opcode/addressing mode byte(s) may be followed by :
¢ No additional byte.

e Two byte EA (For direct addressing only).
e One or two byte displacement.
e One or two byte immediate operand.

e One or two byte displacement followed by a one or two byte immediate
operand.

Microprocessor 3-103 Instruction Set of 8086/8088 and ALP

Two byte displacement and a two byte segment address (for direct intersegment
addressing only).

Most of the opcodes in 8086 has a special 1-bit indicators. They are :

W-bit :

D-bit :

S-bit :

Some instructions of 8086 can operate on byte or a word. The W-bit in the
opcode of such instruction specify whether instruction is a byte instruction
(W = 0) or a word instruction (W = 1).

The D-bit in the opcode of the instruction indicates that the register specified
within the instruction is a source register (D = 0) or destination register (D =1).

An 8-bit 2’s complement number can be extended to a 16-bit 2’s complement
number by making all of the bits in the higher-order byte equal the most
significant bit in the low order byte. This is known as sign extension. The S-bit
along with the W-bit indicate :

w Operation

8-bit operation

o|loc|®m

—_

0
1 16-bit operation with 16-pit immediate operand
0

1 16-bit operation with a sign extended 8-bit immediate operand

V-bit :

Z-bit :

Table 3.9

V-bit decides the number of shifts for rotate and shift instructions. If V = 0, then
count = 1; if V = 1, the count is in CL register. For example, if V =1 and CL = 2
then shift or rotate instruction shifts or rotates 2-bits.

It is used for string primitives such as REP for comparison with ZF Flag. If it is
1, the instruction with REP prefix is executed until the zero flag matches the
Z-bit.

(Refer Appendix A for instruction formats)

As seen from the Fig. 3.28 if an instruction has two opcode/addressing mode bytes,
then the second byte is of one of the following two forms :

or

MOD Opcode R/M

MOD Reg R/M

Microprocessor 3-104 Instruction Set of 8086/8088 and ALP

where Mod, Reg and R/M fields specify operand as described in the following tables.

Mode Displacement
0 0 Disp = 0 Low order and High order displacement are absent
0 1 Only Low order displacement is present with sign extended to 16-bits.
1 0 Both Low-order and High-order displacements are present.
1 1 r/m field is treated as a ‘Reg’ field.

Table 3.10 ‘Mod’ field assignments

Word Operand (W = 1) Byte Operand (W = 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 Ccs
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 Si 110 DH
111 DI 111 BH

Table 3.11 ‘Reg’ field assignment

R/M Operand Address

000 EA = [BX] + [SI] + Displacement (optional)

001 EA = [BX] + [DI] + Displacement (optional)

010 EA = [BP] + (SI) + Displacement (optional)
011 EA = [BP] + [DI] + Displacement (optional)
100 EA = [S]] + Displacement (optional)

101 EA = [DI] + Displacement (optional)

110 EA = [BP] + Displacement (optional)

111 EA = [BX] + Displacement (optional)

Table 3.12 ‘R/M’ field assignment

Microprocessor 3-105 Instruction Set of 8086/8088 and ALP

mmp Example 3.4 : Write the instruction format for PUSH BX instruction.

Solution : This instruction will put BX register

contents on stack. Referring the table in Byte 1

Appendix A we find that the 5-bit opcode for ol1]ol1lo0]o}1]1

this instruction is 01010. We put 011 in the

REG field to represent the BX register. The Opcode for REG = BX
codes for each registers are shown in PUSH

Table 2.11. The resultant code for PUSH BX Fig 3.29 Instruction format
will be 01010011. for PUSH BX

mmp Example 3.5 : Write the instruction format for MOV AX, CX instruction.

Solution : This instruction will copy a word from the CX register to the AX register.
Referring the table in Appendix A we find the 6-bit opcode for this instruction is 100010.
Because we are moving a word, W=1. The D bit for this instruction may be somewhat
confusing . Since two registers are involved, we can think of the move as either to AX or
from CX. It actually does not matter which we assume as long as we are consistent in
coding the rest of the instruction. If we think of the instruction as moving a word to AX,
then make D=1 and put 000 in the REG field to represent the AX register. The MOD field
will be 11 to represent register addressing mode. We make the R/M field 001 to represent
the other register CX. The resultant code for the instruction MOV AX, CX will be 10001011
11000001. The Fig 3.30 shows the meaning of all these bits.

| Byte 1 | Byte 2]

1jofojof1jo|1f{1}1|1]jojo]o|oloj1

Opcode for MOV] R/M = CX
To REG REG = AX
MOV word Register to register

Fig. 3.30 Instruction format for MOV AX, CX

If we change D field to a 0 and swap the codes in the REG and R/M field, we will get
10001001 11001000, which is another equally valid code for the instruction.

Microprocessor 3-106 Instruction Set of 8086/8088 and ALP

| Byte 1 | Byte 2 |
1lolofloj1i0j0]|1]1]1]0|0|1{0]|0}0

__v_/ e~~~
Opcode for MOV ’ 4 T-R/M = AX
From REG REG = CX

MOV word

Register to register

Fig. 3.31 Alternative instruction format for MOV AX, CS
mmp Example 3.6 : Write the instruction format for MOV 56H[SI], BH

Solution : This instruction will copy a byte from the BH register to a memory location.
The BIU will compute the effective address of the memory location by adding the
indicated displacement of 56H to the contents of SI register. The BIU then produce the
physical address by adding the effective address with the base represented by 16-bit
contents of DS register. The 6-bit opcode for this instruction is again 100010. We put 111 in
the REG field to represent the BH register. D = 0 because we are moving data from BH
register. W = 0 because we are moving a byte. The R/M field will be 100 because SI
contains part of the effective address. The MOD field will be 01 because the displacement
contained in the instruction, 56H, will fit in 1 byte. The 8-bit displacement forms the third
byte of the instruction. The resultant sequence of code bytes will be 10001000 01111100
01010110.

| Byte 1 | Byte 2 | Byte 3

1{ojolo}l1]ofolofoft{1]1{1f{1]oj0fOof{1]Of1|0|111}0

S~~~
Opcode for MOV

~——
1 R/M =[SI] Displacement =56 H

From REG REG =BH

Memory, one byte displacement

MOV Byte
Fig. 3.32 Instruction format for MOV 56H [SI], BH

mmp Example 3.7 : Write the instruction format for MOV DL, [BX].

Solution : This instruction will copy a byte to DL from the memory location whose
effective address is contained in BX. The effective address will be added to the data
segment base in DS to produce the physical address. Referring the table in Appendix A,

Microprocessor 3-107 Instruction Set of 8086/8088 and ALP

we find opcode for this instruction is 100010. We make D = 1 because data is being moved
to register DL. We make W = 0 because the instruction is moving a byte into DL. We put
010 in REG field to represent DL register. We make MOD field 00 to represent memory
with no displacement. For this instruction R/M field will be 111. The resultant sequence of
code bytes will be 1000101000010111.

| Byte 1 | Byte 2 |

11010j0|1}j0]11]0[0j0|0Of1]0}11}111
—— e e e Ve
Opcode for MOV l LR/M = [BX]

To REG
MOV Byte

REG =DL

Memory, no displacement

Fig. 3.33 Instruction format for MOV DL, [BX]

mmp Example 3.8 : Write the instruction format for MOV BX, [1234H]

Solution : This instruction copies the contents of two memory locations into the BX
register. The direct address or displacement of the first memory location from the start of
the data segment is 1234H. The BIU will produce the physical memory address by adding
this displacement to the data segment base represented by the 16-bit number in the DS
register.

The 6-bit opcode for this instruction is again 100010. We make D = 1 because we are
moving data to the BX register, and we make W = 1 because the data being moved is a
word. We put 011 in the REG field to represent the BX register. Referring Tables 3.11 and
3.12 we get MOD = 00 and R/M field = 110. Then the first two bytes of instruction code
will be 10001011 00011110. These two bytes will be followed by the low byte of the direct
address, 34H (0011 0100 binary), and the high byte of the direct address, 12H (0001 0010
binary). The instruction will be coded into four successive memory addresses as 8BH, 1EH,
34H and 12H.

| Byte 1 | Byte 2 | Byte 3 | Byte 4 |
1{0y0jo0f1jo|1yt1j0jo|O|1]1]|1|1]0j0j0}1{1}j0|tjOj0}i0jO|lOj1|OfjO}|1]|0
N b
Opcode for MOV REG =BX Direct address Direct address
To REG e lower byte Higher byte
| ire
MOV word addressing

Fig. 3.34 Instruction format for MOV BX, [1234H]

Microprocessor 3-108 Instruction Set of 8086/8088 and ALP

nmdp Example 3.9 : Write the instruction format for MOV CS : [BX], CL.

Solution : This instruction copies a byte from the CL register to a memory location. The
effective address for the memory location is contained in the BX register. Usually an
effective address in BX will be added to the data segment base in DS to produce the
physical memory address. In this instruction, the CS in front of [BX] indicates that we
want the BIU to add the effective address to the code segment base in CS to produce the
physical address. The CS : is called segment override prefix.

When an instruction containing a segment override prefix is coded, an 8-bit code for
the segment override prefix is put in memory before the code for the instruction. The code
byte for the segment override prefix has the format 001 XX 110. We can be replace XX
with : the segment code. The segment codes are : ES = 00, CS = 01, SS=10 and DS = 11
The segment override prefix byte for CS, then, is 00101110.

The opcode for this instruction is 100010. D = 0 because we are moving data from the
CL register. W = 0 because we are moving a byte. We put 001 in REG field to represent
CL register. We make MOD field 00 to represent memory with no displacement. For this
instruction R/M field will be 111. The resultant sequence of code bytes will be 00101110
10001000 00001111.

| Byte 1 | Byte 2 | Byte 3 |
olol1]ol1|{1]1]lo|lt1]o]lo|o|1]0fj0|OfjO|OjOjO|1|1{1}1
\.—-Y—J ___Vg S~~~
Cs Opcode for MOV l RM = [BX]
Register
From REG REG = CL
MOV Byte

Memory, no displacement

Fig. 3.35 Instruction format for MOV CS : [BX], CL

Review Questions

Explain various data addressing modes of 8086 with the help of examples.
Explain the difference between direct and indirect addressing mode.

Explain base-plus-index addressing mode.

Explain how base-plus-index addressing mode can be used to locate array data.
Explain register relating addressing.

Explain base relative-plus-index addressing.

NS R LN =

Explain how base relative-plus-index addressing can be used to locate data from two dimensional

array.

&

Explain the string addressing mode.
9. Explain various 1/O addressing modes supported by 8086.

Microprocessor 3-109 Instruction Set of 8086/8088 and ALP

" 10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.
24,
25.

26.
27.

28.

29.

Explain direct program memory addressing with the help of example.

What is short, near and far jumps ?

Explain the difference between intersegment and intrasegment jump instructions.
Explain relative program memory addressing.

Explain indirect program memory addressing.

What is stack ?

What is the function of stack pointer ?

What do you mean by top of stack ?

Explain the usefulness of the following instructions in 8086

a. LOCK b. TEST ¢. XLAT d. LES.

Write the difference between the following instructions

a. MOV CX, 437AH and MOV CX, [437AH]

b. MOV BL, 437AH and MOV BL, DS:BYTE PTR [437AH].

Can we write following instructions for microprocessor 8086 ?

a. MOV CX, AL b. MOV DS, 437AH

c. MOV CL, [BX] d. MOV 43H]SI], DH

e. MOV CS:[BX], DL.

With the help of an example describe the action performed by microprocessor 8086 for
each of the following instructions :

a. AAM b. CMPSB ¢. IMUL d. ROL.

Explain the use of the following prefixes

a. REP b. REPE.

Describe the response of 8086 to the following five primitive string operations.
MOVS, CMPS, SCAS, LODS and STOS

Discuss all types of jump instructions used in 8086 microprocessor.

Write a operations performed by the 8086 microprocessor CALL instruction.
Explain in detail the difference between near CALL and far CALL.

For the following instruction compute the address of memory operand for 8086 :
a. MOV AX, [BX] b. MOV AL, [BP + SI]

Assume :

CS =0100H DS =0200H SS =0400H ES = 0030H

BP = 0010H DX = 0020H SI =0030H SP = 0030H

Clearly show computations.

Describe the difference between a jump and a call instruction ? What does the processor do in
executing it ? You may use 8085, 8086 instructions to explain.

Explain what operation is performed by the Jollowing instructions :

a. SHL BYTE PTR [0400 H], CL

b. MOV [BX] [DI] + 4, AX

c. XLAT d. XTHL e. PCHL.

Microprocessor 3-110 Instruction Set of 8086/8088 and ALP

30.
31

32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

Explain the use of PUSH and POP instructions in 8086.

Explain the function of the following instructions of 8086 :

XLAT, CWD and CMPSB.

What is the function of assembler directives ?

Explain the following assembler directives

2. DB b. EXTRN ¢ .MODEL SMALL d. PROC . PUBLIC.
Explain variables, suffix and operators used in assembly language programming.
What do you mean by machine language program ?

What do you mean by assembly language program ?

Give the difference between machine language and assembly language.
Explain the assembly language programming tips.

What do you mean by optimum solution ?

Explain the steps that assembler follows to convert .ASM file to .OB] file.
Explain the function of linker.

What is debugger ? Explain its advantages.

Explain various debugger commands.

What is time delay ? Write an assembly language program to generate a delay of 500 ms.

Explain the two techniques to convert binary to ASCIL

Explain the process of converting ASCII to binary.

Explain the prbcess of displaying hexadecimal data.

Explain how look up tables can be used to convert BCD to 7-segment code.
What is macro ? When it should be used ? What are its advantages ?
Explain the structure of macro with the help of example.

Give the comparison between procedure and macro.

How are parameters passed to a macro ?

aad

BIOS and DOS Interrupts

In the previous chapters we have seen various hardware components of the
microcomputer system, The hardware on its own is of no use (in the sense that we can’t
write or run programs on it) and requires software utilities to make it usable. These are as
follows

1. A permanent loader program that is executed when the power is switched ON.
A program that initializes and contains drivers for all interfaces.

A program that will load and execute other programs.

A program that will handle logical files.

S S A

Programs to implement special features of the system such as :
¢ Time of day clock and
¢ Graphics mode initialization.

The above programs perform resource management and serve as an interface between
the user and the hardware. These programs are collectively known as the operating
system.

In IBM PC, part of the operating system is located in the permanent memory (ROM)
and part is loaded during power up. The part located in ROM is referred to as
ROM-BIOS (Basic Input/Output System). The other part which is loaded in RAM during
power-up from hard disk or floppy disk is known as DOS (Disk Operating System).

4.1 ROM-BIOS (Basic Input/Output System)

BIOS is located in an 8 kbyte ROM at the top of memory, the address range being
from FEOOOH to FFFFFH. The programs within ROM-BIOS provide the most direct, lowest
level interaction with the various devices in the system. The ROM-BIOS contains routines
for

1. Power-on self test

2. System configuration analysis

(4-1)

Microprocessor 4-2 BIOS and DOS Interrupts

Time-of-day
Print screen

Bootstrap loader

o Ok W

1/0 support program for

a. Asynchronous communication

b. Keyboard

c. Diskette

d. Printer

e. Display.

Most of these programs are accessible to the assembly-language programmer through
the software interrupt instruction (INT). The design goal for the ROM-BIOS programs is to
provide a device-independent interface to the various physical devices in the system. The

following section describes what is meant by device-independent interface to the various
physical devices in the system.

Let us see the parallel printer interface as an example :

OUT_CHAR : IN AL, STATUS ; Get status of printer
TEST AL, 01lH ; Is it busy
JNZ OUT_CHAR ; Yes, try again
MOV AL, CHAR ; Get character
MOV DX, ADDR DATA ; Get address

OUT DX, AL ; Send character
To run this program successfully, it is necessary to know the physical address of status
and ADDR DATA (Address of data port). It is also necessary to know the location and
desired state of the “BUSY BIT”. Now, we will see same program with BIOS CALL.

Program with ROM-BIOS CALL

OUT CHAR : MOV AL, CHAR ; Get character
MOV AH, OOH ; Function 0 = output
INT 17H ; Send to BIOS routine

In the above program, AL and AH hold the character to be printed and function
number respectively. It is absolutely not necessary to know anything about the hardware.
So we can say that the later program is device/hardware independent program and
interface is device/hardware independent interface.

4.2 Disk Operating System (DOS)

It is seen that ROM-BIOS provides basic low-level services. Using ROM-BIOS one can
output characters to various physical devices like the printer or the display monitor, one
can read characters from keyboard, one can read or write sectors of data to the diskette.
But still few things we cannot do with ROM-BIOS.

1. It is not possible to provide ability to load and execute programs directly.

2. It is not possible to store data on the diskette organized as logical files.

Microprocessor 4-3 BIOS and DQS Interrupts

3. ROM-BIOS has no command-interpreter to allow us to copy files, print files, delete

files.

It is DOS that provides these services. When we turn our computer ON, we expect to
see a message or a prompt. We except to be able to look at the diskette directory to see
what data files or programs the diskette contains. We expect to run a program by typing
its name. We want to copy programs from one diskette to another, print programs, and
delete programs. All these services are provided by group of programs called DOS. The
services provided by DOS can be grouped into following categories.

1. Character device I/O : This group includes routines that input or output characters to
character oriented devices such as the printer, the display monitor, and the keyboard.

2. File management : This group includes routines that manage logical files, allowing
you to create, read, write and delete files.

3. Memory management : This group includes routines that allow us to change,
allocate, and deallocate memory.

4. Directory management : This group includes routines that permit us to create,
change search, and delete directories.

5. Executive functions : This group includes routines that allow us to load and execute
programs, to overlay programs, to retrieve error codes from completed programs, and to
execute commands.

6. Command interpreter : This routine is in action whenever a prompt is present on the
screen. It interprets commands and executes DOS functions, utility programs, application
programs, depending upon the command.

7. Utility programs : These programs facility to copy, delete provides the DISKCOPY,
DIR and many other DOS commands.

Comparison between DOS and ROM-BIOS

Sr. No. DOS BIOS

1. DOS is loaded from the bootable diskette. BIOS is located in an 8 kbyte ROM.

2 DOS program offer different degree of | The programs within the ROM-BIOS provide
flexibility, ~ portability, —and hardware | the most direct, lowest level interaction with
independence. the various devices in the system. Using

these programs require hardware
knowledge.

3. DOS has ability to load and execute| ROM-BIOS does not have ability to load
programs directly. and execute programs directly.

4. DOS can store data on the diskette| ROM-BIOS cannot store data on the
organized as a logical files. diskette organized as a logical files.

5. DOS has a command-interpreter to allow us| ROM-BIOS has no command-interpreter to
to copy files, print files and delete files. allow us to copy files, print files, and delete

files.

Microprocessor 4-4 BIOS and DOS Interrupts

4.2.1 Intervals of DOS

We have seen that DOS is not located in the ROM
with ROM-BIOS. It is stored on a diskette and is
loaded into RAM by a bootstrap loader in BIOS. DOS
is distributed into four parts as shown in Fig. 4.1.

1. Bootstrap loader

Bootstrap loader is a combination of ROM
bootstrap routine and disk bootstrap routine. The ROM
bootstrap routine is not the physical part of DOS, but it Fig. 4.1 Structure of DOS
is a logical extension to DOS, since it is a part of
ROM-BIOS. These two routines are used to load DOS into the memory.

2. BIOS

The BIOS is the inner level of the DOS (Don’t confuse BIOS with ROM BIOS). It is
provided by the manufacturer of the system. It contains the default resident hardware
dependent drivers for

1. Console display and keyboard (CON)

Line printer (PRN)

Auxiliary device (AUX)

Date and time (CLOCK $)

Boot disk device (block device).

The BIOS is read into RAM during system initialization as part of a file named 10.SYS.

(In PC-DOS, the file is called IBMBIO.COM). It is responsible for determining equipment
status, initializing equipment, and loading device drivers.

ANl N

3. DOS Kernel

The DOS Kernel is read into memory during system initialization from the
MSDOS.SYS file on the boot disk (The file is called IBMDOS.COM in PC DOS). It provides
interface between DOS and user programs through the DOS function calls.

4. Command processor or command interpreter

The command processor or command interpreter is an outer layer called shell. It is an
user interface to the operating system. The command processor or command interpreter is
responsible for parsing and carrying out user commands. The command processor or
command interpreter is available in the file named COMMAND.COM. It is divided into
three parts.

1. A resident portion
2. An initialization section
3. A transient section

Microprocessor 4-5 BIOS and DOS Interrupts

Resident portion : Resident Portion of the COMMAND.COM i responsible for
processing routines for Ctrl-C, Ctrl-Break, critical errors, and the termination of other

transient programs. The resident portion also contains the program required to reload the
transient portion of the COMMAND.COM if necessary.

Initialization section : Initialization portion of the COMMAND.COM processes the
AUTOEXEC.BAT file, which executes the list of commands at system startup.

Transient section : The transient section issues user prompt, reads the commands from
the keyboard for batch file, and executes these commands. The ucer commands are divided
into three categories.

1. Internal commands (COPY, REN, DIR, etc.)
2. External commands
3. Batch files.

The code for the internal commands is embedded in the COMMAND.COM. But the
code for external commands must be loaded from the disk into the Transient Program
Area (TPA) of the memory before execution of the external command. The external
commands are the executable program files with the extensions .EXE, .COM or .BAT. The
MS-DOS uses the EXEC function to load and execute these external commands.

4.2.2 Loading of DOS

When the system is started or reset, program execution begins at address OFFFFOH.
The addresses OFFFFH lies within an area of ROM and it contains a jump instruction to
transfer control to system test code, Power On Self Test (POST). Then the control is
transferred to the ROM bootstrap routine. The ROM bootstrap routine reads the disk
bootstrap routine from the first sector of the system startup disk (the boot sector) into
memory at some arbitrary address and then transfers control to it.

In a PC-XT or AT, the machine may require to boot from the winchester in drive C
rather than from a floppy diskette in drive A. In this case, there should be no diskette in
drive A. The ROM program senses the absence of a diskette in drive A and tries to load
the disk bootstrap program from drive C.

The diskbootstrap checks to see if the ‘boot’ disk contains DOS by checking the first
sector of the root directory for the file I0.SYS and MSDOS.SYS (These are referred to as
IBMBIO.COM and IBMDOS.COM in PC-DOS). If these are not found in the bootdisk, the
user is prompted to change disks and strikes any key to try again. If the two files are
found, the diskbootstrap reads them into memory and transfers the control to the I0.SYS.

The I0.SYS file consists of two separate modules. The first is the BIOS, which contains
the linked set of resident device drivers for the console, auxiliary port, printer, clock
devices, and some hardware specific initialization code. Second module consists of system
initialization program (SYSINIT) which determines the RAM size in the PC and based on
this information moves itself to high memory. Then, it loads the MSDOS.SYS (or

Microprocessor 4-6 BIOS and DOS Interrupts

IBMDOS.COM) program to its final memory location or shifts it from its original load
Jocation to the final one. The final location of the DOS Kernel program, MSDOS.SYS, may
actually overwrite the now unnecessary portions of IO.SYS. This sequence finally ends
with control being transferred to MSDOS.SYS.

The DOS Kernel initializes its tables and sets up its various work areas. It sets up the
interrupt vectors for the DOS interrupts 20H-2FH pointing them to appropriate service
routines (which are also a part of DOS). It then loads and executes the device drivers.
These driver functions determine the equipment status, perform necessary hardware
initialization, and set up vectors for any external hardware interrupts. It allocates
appropriate buffers, e.g. for disk, and finally returns control to the system initialization
program (SYSINIT).

After the initialization of DOS Kernel and all device drivers are available, SYSINIT
calls the normal MS-DOS file service to open the CONFIG.SYS file. The CONFIG.SYS
contains a list of additional device drivers that the user wants in his system. Typical
example of such additional drivers are VDISK.SYS to establish a RAM-disk (i.e. an area of
memory that behaves exactly like a disk) or ANSLSYS to load the expanded keyboard and
screen control programs. This program can also change the default values of the number
of files that DOS can simultaneously keep open and the number of buffers allocated for
files. An example of CONFIG. SYS is shown below.

BUFFERS = 30
FILES = 20
DEVICE = ANSLSYS

The additional drivers indicated in the CONFIG.SYS file are sequentially loaded into
memory, initialized by calls to their INIT modules, and linked into the device-driver list.
The INIT function of each driver tells SYSINIT how much memory to reserve for that
driver.

After loading of all installable device drivers, SYSINIT closes all file handles and
reopens the console (CON), printer (PRN), and auxiliary (AUX) devices as the standard
input, standard output, standard error, standard list, and standard auxiliary devices. This
allows a user installed character device-driver to override the BIOS's resident drivers for
the standard devices.

Finally, SYSINIT calls the EXEC function to load the command interpreter, or shell.
(The default interpreter can be substituted by means of the CONFIG.SYS as mentioned
earlier). Once the interpreter is loaded, it displays a prompt and waits for the user to enter
a command. Fig. 4.2 shows the DOS memory map and how different components of DOS
share the system memory.

Microprocessor 4-7 BIOS and DOS Interrupts

ROM bootstrap routine

Top of RAM
Transient part of COMMAND.COM

/‘__/
N

Transient program area

Resident part of COMMAND.COM

Installable drivers

File control blocks

Disk buffer cache

DOS Kernel

BIOS

00400H
00000H

Interrupt vectors

Fig. 4.2 DOS memory map

4.3 Executable Files
The programs that are executed by the PC, operating under DOS, are of two types :

¢ Programs with .EXE extension and
e Programs with .COM extension.

The one main difference between these two programs is that .COM programs use only
one segment, while .EXE programs use many segments. Therefore, .COM programs can
have a maximum size of approximately 64 kB and .EXE program can be as large as
available memory. The .COM programs fit in the tiny model, in which all segment
registers contain the same value; that is, the code and data are mixed together. In contrast,
EXE programs fit in the small, medium or large model, in which the segment registers
contain different values; that is, the code, data and stack reside in separate segments. The

Microprocessor 4-8 BIOS and DOS Interrupts

.EXE programs can have multiple code and data segments. Let us see the structure of
these programs in detail.

4.3.1 Introduction to .COM Programs

A .COM program resides on the disk as an absolute image of the machine instructions
to be executed. Because .COM program does not contain relocation information, they are
more compact, and are loaded for execution slightly faster than .EXE programs.

The .COM programs are loaded immediately above the program segment prefix (PSP)
and they do not have header to specify entry point. The entry point or origin of .COM
program is 0100H. It is the length of the PSP. The location 0100H contains an executable
instruction in the .COM program. The maximum length of a .COM program is 65,536 bytes
(one segment length) minus the length of the PSP (256 bytes) and a mandatory word of
stack (2 bytes). Because the .COM programs use only one segment, all jump and call
instructions in the .COM program will be of NEAR type.

When control is transferred to the .COM program from MS-DOS, all of the segment
registers point to the PSP. The stack point (SP) register contains OFFFEH if memory allows;
otherwise, it is set as high as possible in memory minus 2 bytes. This is illustrated in
Fig. 4.3.

SS:SP
Stack grows downward from
top of segment
Program code and data
Program segment prefix
CS : 0000H gram segmentp
DS : 0000H
ES : 0000H
SS : 0000H

Fig. 4.3 A memory image of a typical .COM program after loading

When .COM program finishes executing, it can return control to MS-DOS by several
means. The preferred method is INT21H function 4CH.

Sample .COM Program

The .COM program given below displays WELCOME message on the screen. Only one
segment is used in the program. The statement ORG 100H takes care of entry point.

Microprocessor 4-9 BIOS and DOS Interrupts

Remember that the entry point should be at 100H. The ASSUME statement in this program
tells the assembler that CS and DS segment registers are going to use to point to the code
and data segments. But both the segment registers are initialized before entry to point to

the PSP.
PAGE 50,132
TITLE WELCOME
; Writes WELCOME on the screen
code segment
Assume CS: code, DS : code
ORG 100H 7 Initialization of entry point
Start: MOV AH, 09H
MOV DX, OFFSET MES
INT 21h ; [Call DOS function
; to display message]
MOV AH, 4CH
INT 21H ; [Call DOS function to terminate
; the program]
; data area
MES DB ‘WELCOME.S$’
Code ENDS

4.3.2 Introduction to .EXE Program

As mentioned earlier, .EXE programs can have many logical segments, i.e. more than
one code segment, data segment or stack segment. At the time of assembling, assembler
does not know where the data segment will be. So it is not possible to assign address to
the data segment. The actual location of the data segment is determined when the program
is loaded in the memory. After loading of program the actual addresses are known and
can be assigned. This process of assigning the actual/physical addresses is called
relocation. There are many items in .EXE programs need relocation when the program is
loaded. The information about items that needing relocation is kept in the file itself, in the
file header. When .EXE program is loaded in the memory, DOS refers to the file header to
find the items that need relocation. The size of this header varies according to the number
of program instructions that need to be relocated at load time, but it is always a multiple
of 512 bytes. Due to the file header .EXE program is larger than corresponding .COM
program and .EXE programs take longer time because of the relocation process.

Before MS-DOS transfers control to the program, it performs following steps :
* Reads the formatted part of the file header into memory.

* Calculates the size of the executable module and reads the module into memory
at the start segment.

¢ Reads the relocation table items into a work area and adds the value of each
item to the start segment value. \

® Sets the DS and ES registers to the segment address of the PSP.

Microprocessor 4-10 BIOS and DOS Interrupts

e Sets the SS register to the address of PSP, plus 100H (the size of the PSP), plus
the SS offset value stored in the file header. Also, sets the SP register to the
value mentioned in the file header.

e Sets the CS to the address of the PSP, plus 100H (the size of the PSP), plus the

CS offset value in the header. Also sets the IP with the offset value mentioned in
the file header. The Fig. 4.4 shows this initialization.

$S:SP Stack segment : stack
grows downward from top of stack

l

Data segment

Program code
CS:IP

Program segment prefix

DS : 0000H
ES : 0000H

Fig. 4.4 A memory image of a typical .EXE program immediately after loading

After the above initialization, DOS discards the .EXE file header. With this initialization
the CS and SS registers are set correctly, but your program has to set the DS and ES for its
own data segment. This is illustrated in the sample .EXE program given below.

Sample .EXE Program

This source program gives the same result as the program listed as sample .COM
program. However, it is EXE file rather than COM file. In this file two separate segments
are defined : the data segment (named Data) and the code segment (named Code). The
symbols Code and Data are arbitrary; any other symbols can be used.

PAGE 50,132

TITLE WELCOME

; Writes WELCOME on the screen
.model small

.Data
MES DB '"WELCOME. $'

.Code

Start: MOV AX, @Data ; [Initialize
MOV DS,AX ; data segment |
MOV AX,09H
MOV DX,OFFSET MES
INT 21H ; [call DOS function

; to display message]

MOV AH, 4CH
INT 21H ; [call DOS function to

; terminate the program]
END Start

Microprocessor

4-11

BIOS and DOS Interrupts

4.3.3 Comparison between .EXE and .COM Programs

Sr. No. .COM Format .EXE Format
1. In COM program data, code, and stack| .EXE program can have multiple code, data,
reside in one segment. and stack segment.
2. The .COM files are compact and are loaded .EXE files contain unique header, a
slightly faster than equivalent .EXE file,| relocation map, a checksum and other
i since these czntain only the execution code. information used by DOS along with the
execution code.
3. Near subroutine are used in the .COM| .EXE programs can contain more than one
files. code segment. So both near and far CALLs
are used.
4. CS starts at and IP at 0100H. Not fixed.
5. Maximum length of program (code and data)| .EXE program can be as large as available
is 65,536 bytes (64 K) minus 256 bytes of memory.
PSP.
6. In .COM format, the size of the file is exact| In .EXE formats, the size of the file is size
size of the program. of program plus the size of header.
7. .COM program does not require file header. .EXE programs need file header for
relocation process.

Table 4.1 Comparison between .COM and .EXE files

4.3.4 Programmer’s Template

The contents of the programmer’s template must be entered for almost every program.
If you create a file that contains the template, the overhead of writing template contents
can be avoided. You can then create program directly from the template file by adding to

it in appropriate place.
; This is a program template to which you can add
; program and data definitions.
; Insert program and data definitions where indicated
; model definition
.model small
; stack definition.

.stack 100
; data definitions
.data
; code definitions
.CODE
; Initialisation of data segment
START: MOV AX, @DATA ; [Initialization
MOV DS, AX ; of data segment]
; User program
EXIT: MOV AH, 4CH ; Terminate and
INT 21H ; Exit to DOS

END START

Microprocessor 4-12 BIOS and DOS Interrupts

4.3.5 Conversion of .ASM to .EXE and .EXE to .COM

To create .COM program, it is necessary to create EXE program. To create .EXE
program, .ASM program is first assembled using macro assembler to produce .OB]J (object)
program. Then the object program is linked with the help of linker to produce .EXE
program. Finally, .EXE program is converted into a .COM program with the help of
EXE2BIN utility. To convert .EXE program to .COM program, program must meet the
following prerequisites :

e It cannot contain more than one segment.

e It must be less than 64 kB in length.

e It must have an origin at 0100H.

e The first location in the file must be specified as the starting point in the source

code’s END directive.
Command formats :
MASM File_name.asm;
Link File_name.obj;

EXE2BIN sourcefile destinationfile

Example :

c:\masm61\bin\>MASM myprog.asm;
c:\masmé61\bin\>LINK myprog.obj;
c:\masm61\bin\>EXE2BIN myprog.exe myprog.com

Note : Default extension for source file is .EXE, where as default extension for
destination file is .BIN.

4.3.6 EXEC Function

The MS-DOS EXEC Function (INT 21H Function 4BH) allows to load .COM and .EXE
programs from disk files, execute it, and then regain control when the program is finished.
It also allows a program (called the parent) to load any other program (called the child)
from disk, execute it and then regain control when the child program is finished. It builds
a special data structure called a program segment prefix (PSP), in the transient program
area (TPA). (Refer Fig. 4.5 on page 4-15). The PSP contains various linkages and pointers
needed by the application programs. After building PSP, the EXEC function loads the
program, just before the PSP and performs any relocation if necessary. It then sets up the
segment registers and stack and transfers control to the program. So in all EXEC Function
does following :

o Allocates memory for the new program.

e Builds the Program Segment Prefix () at the lowest area of memory.

Microprocessor 4-13 BIOS and DOS Interrupts

* Loads the program above the PSP.

* Sets up appropriate registers, i.e. segment registers and the stack and transfers
control to the new program.

For .EXE programs, the EXEC function may also do some additional processing like
passing parameters from parent to child through the environment block.

The environment block holds certain information used by the system’s command
interpreter (usually COMMAND.COM) and may also hold information to be used by
transient programs (COM and .EXE programs).

4.3.7 Ending Program Execution

There are several ways to terminate current program execution and return control to
MSDOS. These are explained below :

1. INT 20H : The INT 20H function ends execution of a .COM program, restores
addresses for Ctrl + Break and critical errors, flushes register buffers and returns
control to MSDOS. However, this function requires the address of the PSP in CS
register.

2. INT 21H : Function 00H : This function terminates the current program, releases
memory belongs to the program, flushes register buffers and returns control to
MSDOS. However, this function also requires the address of the PSP in CS register.

3. INT 21H : Function 31H : This function terminates the execution of the currently
executing program, passing a return code to the parent process, but reserves part
or all of the program's memory so that it will not be overlaid by the next transient
program to be loaded.

4. INT 27H : This function terminates the execution of the currently executing
program but reverses part or all of its memory so that it will not be overlaid by
the next transient program to be loaded. This function requires the address of the
PSP in CS register and the offset of the last byte plus one (relative to the PSP) of
program in the DX register.

5. INT 21H : Function 4CH : This function terminates the current program by
passing a return code to the parent program. This function releases all memory
belongs to the program, flushes register buffers and returns code in the AL
register. The return code for normal completion of a program is usually 0 (zero).
Because this function does not require the address of PSP in CS and it releases all
memory belongs to the program, it is the standard, preferred method of program
termination.

Microprocessor 4-14 BIOS and DOS Interrupts

4.4 PSP (Structure Details)

As mention earlier, PSP contains various linkages and pointers needed by the
application programs. It is a special data structure of 256 bytes. Fig. 4.5 shows the
structure of program segment prefix. This structure is loaded by DOS before the transient
program is loaded. It occupies the base of the memory block allocated to a transient
program. Table 4.2 presents some of the important items in the PSP.

Offset Contents

00H-01H Contains a linkage to the MS-DOS process termination handler, which
cleans up after the program has finished its job and performs a final exit.

02H-03H Contains the address of the top of the transient program’s aliocated
memory block. This information is used to determine whether it should
request for extra memory to do its job or whether it has extra memory
that it releases for use by other processes.

05-08H Contains linkages to the MS-DOS function dispatcher, which performs disk
operations, console input/output, and other such services at the request of
the transient program.

0A-0DH Contains the original contents of the interrupt vector (22H) for the
termination.

OE-11H Contains the original contents of Ctrl C (23H) interrupt vector.

2 15H Contains the original contents of critical error handler (24H) interrupt
vector.

2C-2DH Contains the segment address of environment block.

5C-6BH Default file control block #1

6C-7FH Default file control block #2

80H Length of the command tail not including return character at its end.
81H-FFH The 128 byte area from 0080H to 00FFH contains command tail and is

used as the default disk transfer area (DTA), which is set by MS-DOS
before passing control to the transient program.

Table 4.2 Important areas in the PSP
Note :

1. (File Control Block) is a special data structure used to access a file.

2. Command tail is a remaining part of the command line that invoked the transient
program, after the program'’s name.

3. DTA (Disk Transfer Area) : In file functions using FCB method data is always read
to or written from the current disk transfer area (DTA), whose address is set with
TNT 21H function 1AH.

Microprocessor 4-15 BIOS and DOS Interrupts

Offset
0000H
Int 20H
0002H
Segment, end of allocation block
0004H
Reserved
0005H
Long call to MS-DOS function dispatcher
000AH
Previous contents of termination handler interrupt vector (Int 22H)
000EH
Previous contents of Ctrl-C interrupt vector (Int 23H)
0012H
Previous contents of critical-error handler interrupt vector (Int 24H)
0016H
Reserved
002CH
Segment address of environment block
002EH
Reserved
005CH
Default file control block #1
006CH Default file control block #2
(overlaid if FCB #1 opened)
0080H
Command tail and default disk transfer area (buffer)
00FFH

Fig. 4.5 Structure of program segment prefix
To summarize PSP does the following things :

1. Provides linkages to DOS required by the transient program.

2. Stores interrupt vector addresses of the parent program for the termination handler
(INT 22H), the Ctrl C interrupt (INT 23H) and the critical error handler (INT 24H)
needed by DOS for its own purpose.

3. Stores the command tail.

4. Provides two default file control blocks (FCBs).

Microprocessor 4-16 BIOS and DOS Interrupts

4.5 DOS and BIOS Calls

4.5.1 Character Input Functions

Int 21H Character input with echo Function 01H

Reads a character from the standard input device and echoes it to the standard output
device. If no character is ready, waits until one is available.

Calling parameters
AH = O0O1lH

Returns
AL = 8-bit input data

Example : Read one character from the keyboard into register AL, echo it to the
display, and store it in the variable char.

char do O ; input character
mov ah,(Clh ; function number
int 21h ; transfer to DOS
mov char,al ; save character
Int 21H Direct console 1/O Function O6H

Used by program that need to read and write all possible characters and control codes
without any interference from the operating system.

Reads a character from the standard input device or writes a character to the standard
output device. I/O may be redirected.

Calling parameter

AH = 06H
DL = function requested

0OOH-FEH if output request

OFFH if input request

Returns : Nothing, if called with DL = O0OH-OFEH
If called with DL=FFH and a character is ready returns
Zero flag = clear
AL = 8-bit input data

If called with DL = FFH and no character is ready
Zero flag = set

Microprocessor 4-17 BIOS and DOS Interrupts

Int 21H Unfiltered character input without echo Function O7H

Reads a character from the standard input device without echoing it to the standard
output device. If no character is ready, waits until one is available.

Calling parameters
AH = 07H
Returns
AL = 8-bit input data

Example : Read a character from the standard input without echoing it to the display,
and store it in the variable char.

char do 0 ; 1input character
mov ah,7 ; function number
int 21h ; transfer to MS-DOS
mov char,al ; save character
Int 21H Character input without echo Function O8H

Reads a character from the standard input device without echoing it to the standard
output device. If no character is ready, waits until one is available.

Calling parameters
AH = 08H
Returns
AL = 8-bit input data

Example : Read a character from the standard input without echoing it to the display,
allowing possible detection of Ctrl-C, and store the character in the variable char.

char db 0
mov ah, 08h i/ function number
int 21h i transfer te M8=DOS
mov char,al ; save character
Int 21H Buffered keyboard input Function 0AH (10)

Reads a string of bytes from the standard input device, up to and including an ASCII
carriage return (ODH), and places them in an user-designated buffer. The characters are
echoed to the standard output device.

Microprocessor 4-18 BIOS and DOS Interrupts

Calling parameters

AH = OAH
DS:DX = segment:offset of buffer

Returns : Nothing (data placed in buffer)

Notes :
The buffer used by this function has the following format :

Byte Contents

0 maximum number of characters to read, set by
program

1 number of characters actually read (excluding
carriage return),set by MS - DOS

2 string read from keyboard or standard input,

terminated by a carriage return (ODH)
If the buffer fills to one fewer than the maximum number of characters it can hold,
subsequent input is ignored and the bell is sounded until a carriage return is detected.

Example : Read a string that is maximum of 80 characters long from the standard input
device, placing it in the buffer named buffer.

buffer db 81 ; maximum length of input
do O ; actual length of input
db 81 dup (0) ; actual input placed here
mov ah,0Oah ; function number

mov dx,seg buffer; input buffer address
mov ds,dx

mov dx,offset buffer

int 21h ; transfer to MS-DOS

Int 21H Check input status Function OBH (11)

Checks whether a character is available from the standard input device.

Calling parameters
BH = OBH
Returns

AL = O00OH if no character is available
FFH if at least one character is available

Example : Test whether a character is available from the standard input.

mov ah, Obh ; function on number
int 21h ; transfer to MS-DOS
or al,al ; character waiting?

Microprocessor 4-19 BIOS and DOS Interrupts

jnz avail ; Jump if char available

Int 21H Flush input buffer and then input Function OCH (12)

Clears the standard input buffer and then invokes one of the character input functions.
Input can be redirected.

Calling parameters

H 0OCH

L number of input function to be invoked
after resetting buffer (must be 01H, O6H,
07H, O08H, or OAH)

(if AL = OAH)

DS:DX = segment:offset of input buffer

Returns : (if called with AL = 01H, 06H, 07H, or 08H)
AL = 8-bit input data
(if called with AL = 0AH)

Nothing (data placed in buffer)

A
A

4.5.2 Character Display Functions

Int 21H Character output Function O2H

Outputs the character to the standard output device.

Calling parameters
AH = 02H
DL = 8-bit data for output
Returns : Nothing

Example : Send the character “*” to the standard output device.

mov ah,2 ; function number
mov dl,’*’ ; character to output
int 21h ; transfer to MS-DOS

Microprocessor 4-20 BIOS and DOS Interrupts

Int 21H Display string Function 09H

Sends a string of characters to the standard output device. End of string is indicated
by character $ (24H).

Calling parameters
AH = 0SH
DS = segment:offset of string

Returns : Nothing

Example : Send the string, followed by a carriage return and line feed, to the

standard output device.
cr equ 0dh
1f equ Oah
msg db \MICROPROCESSOR’ ,cr,1f,"$’

mov ah, 0%h ; function number
mov dx,seg msg ; address of string
mov ds,dx

mov dx,offset msg

int 21h ; transfer to MS-DOS

4.5.3 File Control Block Functions

Int 21H Open file Function OFH (15)

Opens a file and makes it available for subsequent read/write operations.

Calling parameters

segment:offset of file control block

Returns :
If function successful (file found)
AL = OOH
and FCB filled in by MS-DOS as follows :
drive field (offset 00H) 1 for drive A, 2 for drive B, etc.

current block field (offset 0CH) 00H

record size field (offset OEH) 0080H

[2.0+] size field (offset 10H) file size from directory
[2.0+] date field (offset 14H)
[2.0+] time field (offset 16H)

If function unsuccessful (file not found)
AL = FFH

L

]

date stamp from directory

time stamp from directory

Microprocessor

4-21

BIOS and DOS Interrupts

Example : Attempt to open the file named TEST.DAT on the default disk drive.
myfcb db 0 ; drive = default
db ‘TEST' filename, 8 characters
db ‘DAT’ extension, 3 characters
db 25 dup (0) remainder of FCB
mov ah, 0fh function number
mov dx,seg myfcb address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h transfer to MS-DOS
or al,al check status
jnz error jump if open failed
Int 21H Close file Function 10H (16)

Closes a file, flushes all MS-DOS internal disk buffers associated with the file to disk,
and updates the disk directory if the file has been modified or extended.

Calling parameter

,, DS:DX

Returns

= 10H

segment:offset of file control block

If function successful (directory update successful)

AL

= 00H

If function unsuccessful (file not found in directory)

AL

= FFH

Example : Close the file that was previously opened using the file control block named

myfcb.
myfcb

do O
db ‘TEST’
db ‘DAT’

do 25 dup (0)

mov ah, 10h

mov dx, seg myfcb
mov ds, dx

mov dx, offset myfcb
int 21h

or al, al

jnz error

drive = default
filename, 8 characters
extension, 3 characters
remainder of FCB

function number
address of FCB

transfer to MS-DOS
check status
jump if close failed

Microprocessor 4-22 BIOS and DOS Interrupts

Int 21H Delete file Function 13H (19)

Deletes all matching files from the current directory on the default or specified disk
drive.

Calling parameter

AH = 13H
DS:DX = segment:offset of file control block

Returns :

If function successful (file or files deleted)
AL = 00H
If function unsuccessful (no matching files were found, or at least one matching file
was read-only)

AL = FFH
Example :
Delete the file TEST.DAT from the current disk drive and directory.

myfcb do O ; drive = default
db ‘TEST’ ; filename, 8 characters
db ‘DAT’ ; extension, 3 characters
db 25 dup (0) ; remainder of FCB
mov ah,13h ; function number o
mov dx,seg myfcb ; address of FCB

mov ds,dx
mov dx,offset myfcb

int 21h ; transfer to MS-DOS

or al,al ; check status

jnz error ; jump if close failed
Int 21H Sequential read Function 14H (20)

Reads the next sequential block of data from a file, then increments the file pointer
appropriately.

Calling parameter

AH = 14H
DS:DX = segment:offset of previously opened file
control block

Returns
AL = 00H if read successful

Microprocessor 4-23 BIOS and DOS Interrupts

0lH if end of file

02H 1if segment wrap

03H if partial record read at end of file
Example : Read 512 bytes of data from the file specified by the previously opened file
control block myfcb.

myfcb do O ; drive = default
db ‘TEST’ ; filename, 8
; characters
db ‘DAT' ; extension, 3
; characters
db 25 dup (0) ; remainder of FCB
mov ah, 14h ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb ; set record size
mov word ptr myfcb+0eh,512
int 21h ; transfer to MS-DOS
or al,al ; check status
jnz error ; jump if read failed
Int 21H Sequential write Function 15H (21)

Writes the next sequential block of data from a file, then increments the file pointer
appropriately.

Calling parameter
AH = 15H
DS:DX = segment:offset of previously opened file
control block

Returns
AL = 00H if write successful
01H if disk is full
02H if segment wrap

Example : Write 512 bytes of data to the file specified by the previously opened file
control block myfcb.

myfcb do O ; drive = default
db ‘TEST' ; filename, 8 characters
db ‘DAT’ ; extension, 3 characters

db 25 dup (0) ; remainder of FCB

mov ah,15h ; function number
mov dx,seg myfcb ; address of FCB

Microprocessor

BIOS and DOS interrupts

4-24
mov ds,dx
mov dx,offset myfcb
mov word ptr myfcb+0eh, 1024
int 2ih ;
or al, ail
jnz error

; set record size

; transfer to MS-DOS
; check status
Jump if write failed

Int 21H

Create file

Function 16H (22)

Creates a new directory entry in the current directory or truncates any existing file
with the same name to zero length. Opens the file for subsequent read/write operations.

Calling parameter

Returns :

Example :

myfcb.
myfcb

If function successful (file was

AH
DS:DX

16H
segment:cffset
contrecl block

create

AL 00H
and FCB filled in by MS-DOS as
drive field (offset 00H)
current block field (offset 0CH)
record size field (offset OEH)
[2.0+]size field (offset 10H)
[2.0+]date field (offset 14H)
[2.0+] time field (offset 16H)

I

I

of previously opened file

d or truncated)

follows :

1 for drive A, 2 for drive B, etc.
00H

0080H

file size from directory

date stamp from directory
time stamp from directory

If function unsuccessful (directory full)

AL FFH

Create a file in the current directory using the name in the file control block

db 0 ;
db ‘TEST' ;
db ‘DAT’ ;
do 25 dup (0) ;
mov ah, ith

mov dx,seg myfcb
mov ds,dx

mov dx,offset =yich
int 21h

or al, al

jnz error

drive default
filename, 8 characters
extension, 3 characters

remainder of FCB

; function number
; address of FCB

; transfer to MS-DOS
; check status
; jump if create failed

Microprocessor 4-25 BIOS and DOS Interrupts

Int 21H Rename file Function 17H (23)

Alters the name of all matching files in the current directory on the disk in the
specified drive.

Calling parameter

AH = 17H
D5:DX = segment:offset of “special” file control
block
Returns : If function successful (one or more files are renamed)
AL = 0O0OH
If function unsuccessful (no matching files, or new filename matched an existing file)
AL = FFH
Example : Rename the file OLDNAME.DAT to NEWNAME.DAT.
myr. b db 0 ; drive = default
db ‘OLDNAME’ ; old file name, 8 characters
db ‘DAT’ ; old extension, 3 characters
db 6 dup (0) ; reserved area
db ‘NEWNAME’ ; new file name, 8 characters
db ‘DAT’ ; new extension, 3 characters
db 14 dup (0) ; reserved area
mov ah,17h ; function number
mov dx,seg myfcb ; address of FCB
mov ds,dx
mov dx,offset myfcb
int 21h ; transfer to MS-DOS
or al,al ; c¢heck status
jnz error ; Jump if close failed
Int 21H Get file size Function 23H (35)

Searches for a matching file in the current directory; if one is found, updates the FCB
with the file’s size in terms of number of records.

Calling parameters :

AH = Z3H
DS:DX = segment: offset of unopened file control
block
Returns : If function successful (matching file found)
AL = Q00H

and FCB relative-record field (offset 21H) set to the number of records in the file.

If function unsuccessful (no matching file found)

Microprocessor

BIOS and DOS Interrupts

AL = FFH

Example : Determine the size in bytes of the file MICRO.DAT

db
db
db
db

myfcb

mov
mov
mov
mov

mov
int
or

jnz

mov
mov

4.5.4 Handle Functions

0 ; drive - default

‘MICRO' ; filename, 8 chars

‘DAT' ; extension, 3 chars

25 dup (0) ; remainder of FCB
ah,23h ; function number

dx,seg myfcb ; address of FCB
ds,dx
dx,offset myfcb
; record size-1 byte
word ptr myfcb+0eh, 1
21h ; transfer to MS-DOS
al,al ; check status
error ; jump if no file
; get file size in bytes
ax, word ptr myfcb+21lh
dx, word ptr myfcb+23h

Int 21H

Create file Function 3CH (60)

Creates a new file in the designated or default directory on the designated or default
disk drive. If the specified file already exists, it is truncated to zero length. In either case,
the file is opened and a handle is returned that can be used by the program for

subsequent access to the file.

Calling parameters

AH = 3CH
CX = file attribute (bits may be combined)
Bit ¢s) Significance (if set)
0 read-only
1 hidden
2 system
3 volume label
4 reserved (0}
5 archive

6-15 reserved

DS:DX =

Returns : If function successful

segment:offset of

(0)
ASCII path name

Carry flag = clear
AX = handle

Microprocessor 4-27 BIOS and DOS Interrupts

If function failed
Carry flag = set
AX = error code

Example : Create and open,or truncate to zero length and open, the file

C:\MBS\PRO1.ASM and save the handle for subsequent
access to the file.

fname db ‘C:\MBS\PRO1.ASM’, 0
fhandle dw ?
mov ah, 3ch ; function number
X0r cx,cx ; normal attribute
mov dx,seg fname ; address of path name

mov ds,dx
mov dx,offset fname

int 21h H transfer to MS-DOS
jc error ; jump if create failed
mov fhandle, ax ; save file handle
Int 21H Open file Function 3DH (61)

Opens the specified file in the designated or default directory on the designated or
default disk drive. A handle is returned which can be used by the program for subsequent
access to the file.

Calling parameters

AH = 3DH
AL = access mode
Bit (s) Significance
0-2 access mode
000 = read access
001 = write access
010 = read/write access
3 reserved (0)
4-6 sharing mode (MS~DOS versions 3.0
and later)
000 = compatibility mode
001 = deny all
010 = deny write
011 = deny read
100 = deny none
7 inheritance flag (MS-DOS versions 3.0
& later)
0 = child process inherits handle

1 = child does not inherit handle
DS:DX = segment:offset of ASCII path name

Microprocessor 4-28 BIOS and DOS Interrupts

Returns : If function successful

Carry flag = clear

AX = handle
If function unsuccessful
Carry flag = set
AX = error code

Example : Open the file C:\\PRO1.ASM for both reading and writing, and save the
handle for subsequent access to the file.

fname db 'C:\MBS\PRO1l.ASM’, 0

fhandle dw ?
mov ah,3dh ; function number
mov al,02h ; mode - read/write
mov dx,seg fname ; address of path name

mov ds,dx
mov dx,offset fname

int 21H ; transfer to MS-DOS
jc error ; Jjump if open failed
mov fhandle, ax ; save file handle
Int 21H Close file Function 3EH (62)

Given a handle that was obtained by a previous successful open or create operation,
flushes all internal buffers associated with the file to disk, closes the file, and releases the
handle for reuse. If the file was modified, the time and date stamp and file size are
updated in the file’s directory entry.

Calling parameters

AH = 3EH

BX = handle

Returns : If function successful
Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code

Example : Close the file whose handle is saved in the variable fhandle.
fhandle dw O

mov ah, 3eh ; function number
mov bx, fhandle ; file handle

Microprocessor 4-29 BIOS and DOS Interrupts

int 21h ; transfer to MS-DOS
jc error ; jump if close failed
Int 21H Read file or device Function 3FH (63)

Given a valid file handle from a previous open or create operation, a buffer address,
and a length in bytes, transfers data at the current file-pointer position from the file into
the buffer and then updates the file pointer position.

Call parameters :

AH = 3FH
BX handle
CX = number of bytes to read
DS:DX = segment:offset of buffer
Returns : If function successful
Carry flag = clear
AX = bytes transferre‘d
If function unsuccessful
Carry flag = set
AX = error code

Example : Using the file handle from a previous open or create operation, read
512 bytes at the current file pointer into the buffer named buff.

buff db 512 dup (?) ; buffer for read

fhandle dw ? ; contains file handle
mov ah, 3fh ; function number
mov dx, seg buff ; buffer address

mov ds, dx
mov dx, offset buff

mov bx, fhandle ; file handle
mov cx, 512 ; length to read
int 21h transfer to MS-DOS

je error
cmp ax, cx
j1 done

jump, read failed
check length of read
jump, end of file

e ®we we wo

Microprocessor 4-30 BIOS and DOS interrupts

Int 21H Write file or device Function 40H (64)

Given a valid file handle from a previous open or create operation, a buffer address,
and a length in bytes, transfers data from the buffer into the file and then updates the file

pointer position.

Call parameters

AH = 40H
BX = handle
CX = number of bytes to write

DS:DX = segment:offset of buffer

Returns : If function successful
Carry flag = clear
AX = bytes transferred

If function unsuccessful
Carry flag = set
AX = error code
Example : Using the handle from a previous open or create operation, write 512 bytes
to disk at the current file pointer from the buffer named buff.

buff db 512 dup (?) ;: buffer for write
fhandle dw 2 ; contains file handle
mov ah,40h ; function number
mov dx, seg buff ; buffer address

mov ds, dx
mov dx, offset buff

mov bx, fhandle ; file handle
mov cx, 512 ; length to write
int 21h ; transfer to MS-DOS
jc error ; jump, write failed
cmp ax, 512 ; entire record written?
jne error ; no, Jjump
Int 21H Delete file Function 41H (65)

Deletes a file from the specified or default disk and directory.

Calling parameters
AH = 41H
DS:DX = segment:offset of ASCIIZ pathname
Returns : If function successful
Carry flag = clear
If function unsuccessful
Carry flag = set
AX = error code

Microprocessor 4-31 BIOS and DOS Interrupts

Example : Delete the file named MICRO.DAT from the directory \MYDIR on drive C.
fname db ‘C:\MYDIR\MICRO.DAT’, 0

mov ah,41h ; function number

mov dx, seg fname ; filename address

mov ds,dx

mov dx,offset fname

int 21h ; transfer to MS-DOS

jc error ; Jump if delete failed
INT 21H Move file pointer Function 42H (66)

DOS maintains a file pointer. The open file operation initialize file pointer to 0 and
subsequent sequential reads and writes increment file pointer by record.

Call with :

AH = 42H

AL = method code
00H absolute offset from start of file
01H signed offset from current file pointer
02H signed offset from end of file

BX = handle

CX most significant half of offset

DX = least signficant half of offset

Returns : If function successful
Carry flag = clear

DX = most significant half of resulting file
pointer
least significant half of resulting file
pointer
If function unseccessful

Carry flag = set
AX = error code

AX

Int 21H Rename file Function 56H (86)

Renames a file and/or moves its directory entry to a different directory on the same
disk. In MS-DOS version 3.0 and later, this function can also be used to rename directories.

Calling parameter
AH = 56H
DS: = segment:offset of current ASCIIZ pathname
ES:DI = segment:offset of new pathname

Microprocessor 4-32 BIOS and DOS Interrupts

Returns : If function successful
Carry flag = clear
If function unsuccessful
rarry flag = set
AX error code

it

Example : Change the name of the file MYFILE.DAT in the directory \MYDIR on drive
C to MYTEXT.DAT. At the same time, move the file to the directory \SYSTEM on the
same drive.

oldname db ‘C:\MYDIR\MYFILE.DAT',0 ; drive = default

newname db YC:\SYSTEM\MYTEXT.DAT', 0

mov ah, 56h ; function number

mov dx, seg oldname ; old filename address
mov ds, dx

mov dx, offset oldname

mov di, seg newname ; new filename address
mov es, di

mov di, offset newname

int 21h ; transfer to MS-DOS
jc error ; jump if rename
; failed

4.5.5 Memory Management Functions

Int 21H Allocate memory block Function 48K (72)

Allocates a block of memory and returns a pointer to the beginning of the allocated
area.

Calling parameter

AH 48H
BX = number of paragraphs of memory needed
Returns : If function successful

Carry flag = clear

AX = base segment address of allocated block
If function unsuccessful

Carry flag = set

A¥X = error code

= size of largest available block
(paragraphs)

Example : Request a 64 kB black of memory for use as a buffer.
bufseg dw ? ; segment base of new block

fl

Microprocessor 4-33 BIOS and DOS Interrupts

mov ah, 48h ; function number

mov bx,1000h ; block size (paragraphs)
int 21h ; transfer to MS-DOS

jc error ;7 Jump if allocation failed

mov bufseqg, ax ; save segment of new block

Int 21H Release memory block Function 49H (73)

Releases a memory block and makes it available for use by other programs.

Calling parameter
AH = 49H
ES = segment of block to be released
Returns : If function successful
Carry flag = clear
If function unsuccessful
Carry flag = set
AX = error code

Example : Release the memory block that was previously allocated in the example for
21H Function 48H.

bufseg dw ? ; segment base of block

mov ah,49h ; function number

mov es,bufseg ; base segment of block
int 21h ; transfer to MS-DOS
jc error ; jump if release failed
Int 21H Resize memory block Function 4AH (74)

Dynamically shrinks or extends a memory block, according to the needs of an
application program.

Calling parameter
AH = 4AH

= desired new block size in paragraphs
ES = segment of block to be modified

Returns : If function successful

Carry flag = clear

If function unsuccessful
Carry flag = set
AX = error code
= maximum block size
available (paragraphs)

Microprocessor 4-34 BIOS and DOS interrupts

Example : Resize the memory block that was allocated in the example for Int 21H
Function 48H, shrinking it to 32 kB.

bufseg dw ? ; segment base of block
mov ah,4ah ; function number
mov bx,0800h ; new size (paragraphs)
mov es,bufseg ; segment base of block
int 21h ; transfer to MS-DOS
jc error ; jump, resize failed
mov bufseg, ax ; save segment of new block

Int 15H Move extended memory block Function 87H (135)

Transfers data between conventional memory and extended memory.

Calling parameter

AH = 87h
CX number of words to move
ES:SI = segment:offset of Global Descriptor Table

I

Returns : If function successful

Carry flag clear

AH = O0OH
If function unsuccessful

Carry flag = set
AH = status
0l1H if RAM parity error
02H if exception interrupt error
03H if gate address line 20 failed

It

Int 15H Get extended memory size Function 88H(136)

Returns the amount of extended memory installed in the system
Calling parameter
AH = 88H
Returns :
AX = amount of extended memory (in kB)

4.5.6 Display Functions Provided by ROM BIOS

Int 10H Set video mode Function OOH

Selects the current video display mode. Also selects the active video controller, if more
than one video controller is present.

Microprocessor 4-35 BIOS and DOS Interrupts

Calling parameters

AH = 0O0H
AL = video modes
Returns : Nothing

Different video modes

Mode Resolution Colors Text/graphics

00H 40-by-25 16 text
color burst off
01H 40-by-25 16 text
02H 80-by-25 16 text

color burst off

03H 80-by-25 16 text
04H 320-by-200 4 graphics
05H 320-by-200 4 graphics

color burst off

06H 640-by-200 2 graphics
O7H 80-by-25 2! text
08H 160-by-200 16 ‘ graphics
09H 320-by-200 16 ~ graphics
O0AH 640-by-200 4 graphics
0BH reserved ‘

OCH reserved

ODH 320-by-200 16 graphics
OEH 640-by-200 16 graphics
OFH 640-by-350 22 graphics
10H 640-by-350 4 graphics
10H 640-by-350 16 graphics
11H 640-by-480 2 graphics
12H 640-by-480 16 graphics

13H 320-by-200 256 graphics

Microprocessor 4-36 BIOS and DOS Interrupts

Int 10H Set cursor type Function O1H

Selects the starting and ending lines for the blinking hardware cursor in text display
modes.

Calling parameters

AH = O01H
CH bits 0-4 = starting line for cursor
CL bits 0-4 = ending line for cursor

Note : Cursor can be disabled by setting CH = 20H
Returns : Nothing

Int 10H Set cursor position Function 02H

Positions the cursor on the display, using text co-ordinates.

Calling parameters

AH = 02B
BH = page
DH = row (y co-ordinate)
DL = column (X co-ordinate)
Returns : Nothing
Int 10H Get cursor position Function 031

Obtains the current position of the cursor on the display, in text co-ordinates.

Calling parameters

BH = 03H
BH = page

Returns :
CH = starting line for cursor
CL = ending line for cursor
DH = row {(y co-ordinate)
DL = column (x co-ordinate}

Int 10H Read character and attribute at cursor Function O8H

Writes an ASCII character and its attribute to the display at the current cursor
position.

Calling parameters

AH 08h
Al, = character

Microprocessor 4-37 BIOS and DOS Interrupts

BH = page

BL =attribute (text modes) or color
(graphics modes)

CX = count of characters to write
(replication factor)

Returns : Nothing

Int 10H Write character at cursor Function OAH (10)

Writes an ASCII character to the display at the current cursor position. The character
receives the attribute of the previous character displayed at the same position.

Calling parameters

AH = OAH
AL = character
BH = page

BL =color
CX =count of characters to write
(replication factor)

Returns : Nothing

int 10H Write graphics pixel Function OCH (12)

Draws a point on the display at the specified graphics co-ordinates.

Calling parameters

AH = 0CH
AL =pixel value
BH = page

CX =column (graphics x co-ordinate)
DX =row (graphics y co-ordinate)

Returns : Nothing

Int 10H Read graphics pixel Function ODH (13)

Obtains the current value of the pixel on the display at the specified graphics
co-ordinates.

Calling parameters
AH = ODH
BH = page
CX =column (graphics x co-ordinate)
DX = row (graphics v co-ordinate)

i

Returns : Nothing
AL =pixel value

Microprocessor 4-38 BIOS and DOS Interrupts

4.5.7 Printer Functions

Int 21H Printer output Function O5H

Sends a character to the standard list device. The default device is the printer on the
first parallel port (LPT1)

Calling parameters

AH = O5H
DL = 8-bit data for output

Returns : Nothing
Example : Output character “*” to the list device.

mov ah,5 ; function number

mov dl,’*’ ; character to output
int 21h ; transfer to MS-DOS
Int 17H Write character to printer Function OOH

Sends a character to the specified parallel printer interface port and returns the current
status of the port.

Calling parameters

AH = OCH
AL = character
DX =printer number (0 = LPT1, 1 = LPTZ2,

2 =LPT3)
Returns :
AH = status
Bit Significance (if set)
0 printer timed-out
1 unused
2 unused
3 I1/0 error
4 printer selected
5 out of paper
6 printer acknowledge
7 printer not busy
Int 17H Initialize printer port Function O1H

Initializes the specified parallel printer interface port and returns its status.

Calling parameters
AH =01H

Microbrocessor 4-39 BIOS and DOS Interrupts

DX =printer number (0 = LPT1, 1 = LPT2,

2 = LPT3)
Returns :
AH = status (see Int 17H Function O0OH)
Int 17H Get printer status Function 02H

Returns the current status of the specified parallel printer interface port.

Calling parameters

AH = 02H
DX =printer number (0 = LPT1, 1 = LPT2,
2 = LPT3)
Returns : AH = status (see Int 17H Function O0OH)

Review Questions

- Describe the important functions of operating system.
. What are the important components of DOS ?

. How DOS is loaded ?

. Explain the structure of .COM and .EXE programs.
. Compare .COM and .EXE programs.

- Explain the procedure to generate .COM and .EXE files from .ASM files.
. What are the functions of EXEC function ?

. Explain various method of program termination.

. What is PSP ? What are its functions ?

. Draw and explain the structure of PSP.

. What is BIOS ?

. Explain the difference between BIOS and DOS.

W &® N SN R W N~

M~ e
N~ O

QQa

(4 - 40)

Assembly Language Programs
I—

In this chapter, we see the programs involving logical, branch and call instructions,
sorting, evaluation of arithmetic expressions and string manipulation. Most of the
programs use DOS function calls. The details of DOS function calls are given in chapter 4.

Program 7 : Read keyboard input and display it on monitor

TITLE Read Keyboard Input and Display it on Monitor
.model small
.code
start: mov ax, @data ; [loads the address of data
mov ds,ax ; segment in DS]
back: mov ah, 01
int 21h
cmp al,'Q’
jz Last
jmp back
Last: mov ah,4ch ; [Exit
int 21h ; to DOS]
end start
end

Program 8 : Addition of two 32-bit numbers

; This program adds two numbers
TITLE Addition of two 32-bit numbers
.model small

.data
nol dd 8i11FFFFh
no2 dd 92224444nh

result dd ?
carry db 0
.code
start: mov ax, @data ; [loads the address of data
mov ds, ax ; segment in DS]
mov ax,word ptr ncl ; Get the LS word of first
; number in AX add ax,word
; ptr no2 Add the LS word of
; second number to it

G-1

Microprocessor 5-2 Assembly Language Programs

mov word ptr result,ax; Save LS word of result
mov bx, offset[nol]
mov ax,word ptr [bx+2]; Get the MS word of first
; number in AX
mov bx, offset[no2]
adc ax,word ptr [bx+2] ; Add the MS word of second
; number to it with carry
mov bx, offset result

mov [bx+2],ax ; Save MS word of result
adc carry,0 ; save any carry after
; MS word addition
mov ah,d4ch ; [Exit
int 21h ; to DOS]
end start
end

Program 9 : Addition of 3 x 3 matrix

; This program adds 3 X 3 matrix. The matrices are stored in
; form of lists (row wise).

TITLE Addition of 3 X 3 Matrix

.model small

.data
ml db 10h, 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h
m2 db 10h, 20h, 30h, 40h, 50h, 60h, 70h, 80h, 90h
result dw 9 dup(0)
.code
start: mov ax,@data ; [loads the address of data
mov ds,ax ; segment in DS]
mov cx,9 ; Initialise the counter
mov di, offset ml ; Initialise the pointer to
; matrixl
mov bx, offset m2 ; Initialise the pointer to
; matrix2
mov si, offset result ; Initialise the pointer to
; resultant matrix
back: mov ah, 00 ; Make MSB of result zero
mov al, [di] ; Get the number from matrixl
add al, [bx] ; Get the number from matrix2

and add it in corresponding
number of matrixl

Save the carry of addition
in MSB

Store the result in
corresponding position of

; resultant matrix

~

~

adc ah, 00

mov [si],ax

Ne we N we

inc di ; increment pointer to matrixl
inc bx ; increment pointer to matrix2
inc si ; [increment pointer

inc si ; to resultant matrix]

loop back ; Repeat the process for all

; matrix elements

Microprocessor

mov ah, 4ch
int 21h
end start
end

Flowchart :

;[Exit
; to DOS]

Start

Initialize Counter

I

Initialize Pointer to Matrix 1

l

Initialize Pointer to Matrix 2

l

Initialize Pointer to Resultant Matrix

1

Get the number from Matrix 1

J

Get the number from Matrix 2

%

Perform addition of two numbers

l

Store result in the resultant matrix

l

Increment Pointer to Matrix 1

l

Increment Pointer to Matrix 2

l

Increment Pointer to Resultant Matrix

!

Decrement Counter

Is
Counter
=0
?

Assembly Language Programs

Microprocessor 5-4 Assembly Language Programs

Program 10 : Program to read a password and validate user

.MODEL SMALL

.DATA

.STACK 100

PASS DB 'MBS1234°

MES1 DB 10,13, 'ENTER 7 CHARACTER PASSWORD $!
MES2 DB 10,13, '"PASSWORD IS CORRECT $'

MES3 DB 10,13, 'INVALID PASSWORDS'

.CODE
START: MOV AX, GDATA ;[Initialise
MOV DS, AX ; data segment]
MOV AH, 09H
LEA DX,MES1
INT 21H ; Display message
MOV CL, 00 ; Clear count
MOV DH, COH ; Clear number of match
XOR DI, DI ; Initialise pointer
.WHILE CL != 7 ; Check if count = 7 if not
; Continue
MOV AH,07H
INT 21H ; Read character
PUSH AX ; Save character
MOV AH, 02H ; [Display
MOV DL, '*' ; '*' instead of
INT 21H ; character |
POP AX ; Restore character
LEA BX, PASS ; [Set pointer
MOV AH, [BX+DI] ; to password]
.IF AL==AH ; Compare read character with
; password
ADD DH, 01 ; Increament match count if match
; occurs
.ENDIF
INC DI ; Increment pointer
INC CL ; Increment counter
.ENDW
.IF DH == 7 ; [if match count = 7
MOV AH, 09H ; display message
LEA DX,MES2 ; password is correct]
INT 21H
.ELSE ; [if match count <> 7
MOV AH, 0SH ; display message
LEA DX,MES3 ; password 1is wrong]
INT 21H
.ENDIF
MOV AH, 4CH ; [Exit to
INT 21H ; DGCS]
END START

END

Microprocessor 5-5 Assembly Language Programs

Program 11 : Program to calculate factorial of a number

(Softcopy of this program, P18.asm is available at www.vtubooks.com)

Flowchart :

/Get the number/

Check for validity

Is
number
valid ?

Resuit =0

!

Call facto

Display factorial
of a giver, number
< Stop }

Msl DB 10,13, 'ENTER THE NO.:$'
Ms2 DB 10,13, 'THE FACTORIAL IS : §°'

.MODEL SMALL
.STACK 100
-DATA

NUM DW O
ANS DW O
.CODE
START: MOV DX, @data ; | Initialise
MOV DS, DX ; data segment]
ERROR: LEA DX,MS1
MOV AH, 09H ; Display message MS1
INT 21H
Mov AH,O01H ; Input number with echo
INT 21H
CMP AL, 30H ;i If zero display 1
JE DISPLY2

CMP AL, 30H ; If < 30 then input

Microprocessor 5-6 Assembly Language Programs
JB ERROR ; Next no
CMP AL, 39%H ; If >39 then input
JA ERROR ; Next no
SUB AL, 30H ; Convert to HEX
MOV AH, 00H
SUB SP,0004H ; Space in stack for
PUSH AX ; Factorial
CALL FACTO
ACD SP, 0002 ; After execution
POP AX ; Of facto space for
POP DX ; Result
MOV BX, 0010 ; Convert HEX to BCD
MOV CX, 0006 ; Max input no is 9
BACK: DIV BX ; To get remainder
OR DX, 0030H ; Convert to ASCII
PUSH DX
XOR DX, DX ; Clear DX
LOGP BACK
LEA DX, MS2 ; Output MS2
MOV AH, 09
INT 21H
MOV CX, 0006
DISPLY1: POP DX
MOV AH,02H ; Output factorial
INT 21H
LOOP DISPLY1
JMP LAST
DISPLY2: MOV AH, 09
LEA DX,MS2 ; Display factorial of
INT 21H ; Zero =1
MOV AH, 02H
MOV DL, 31H
INT 21H
LAST: MOV AH, 4CH ; [Terminate and
INT 21H ; Exit to DOS]
FACTO PROC
PUSHF
PUSH AX
PUSH DX
PUSH BP
MOV BP,SP ; Point BP at TOS
MOV AX, [BP + 10] ; Copy no from stack to
CMP AX,0001H ; AX & if no not = 1 then
; GO_ON
JNE GO_ON ; To compute factorial
MOV WORD PTR[BP+12],0001H
; Else load FFACT
MOV WORD PTR [BP+14],0000H

EXIT

’

0 and 1 in stack

Microprocessor 5-7 Assembly Language Programs
GO_ON: SUB SP,0004H ; Space for preliminary

DEC AX ; Factorial

PUSH AX

CALL FACTO

MOV BP, SP

MOV AX, [BP+2] ; Last (N - 1)! from

; stack to AX

MUL WORD PTR [BP+16] ; Multiplv by previous N

MOV [BP+18],AX ;7 Copy new facto to stack

MOV [BP+20], DX

ADD SP,0006H ; Point SP at pushed REGR
EXIT: POP BP

POP DX

POP AX

POPF

RET
FACTO ENDP

END START

Program 12 : Reverse the words in string

(Softcopy of this program, P19.asm is available at www.vtubooks.com)

.MODEL SMALL

DB
DB
DB
DB
DB
DW
DW

.STACK 100
.DATA
TITLE REVERSE THE
M1
M2
BUFF
COUNTER1
COUNTER2
. CODE
START:

MOV
MoV
MOV
MOV
INT
Mov
LEA
INT
MOV
MoV
INT
LEA
INC
Mov
MoV
MOV

WORDS IN STRING

10,13, 'ENTER THE STRING:$'
10,13, 'THE REVERSE STRING :$'

80
0
80 DUP(0)
0
0

AX, @data

DS, AX

AH, 09H

DX, OFFSET M1
21H

AH, OAH

DX, BUFF

21H

AH, 09H

DX, OFFSET M2
21H

BX, BUFF

BX

CH, 00H
CL,BUFF + 1
DI,CX

LTI PO

7

.
’

Ne Ne Ne

[Initialise
data segment]
Display message Mi.

I/P the string.

Display message M2

[Take character
count in
DI]

Microprocessor

5-8 Assembly Language Programs

BACK:

EXIT:

Flowchart :

MOV

MOV
INT
DEC
JINZ
MOV
INT
END

DL, [BX+DI]} ; Point to the end

; character and read it
AH, 02H
21H ; Display the character
DI ; Decrement count
BACK ; Repeat until count is 0
AH, ACH ; [Terminate
21H ; Exit to DOS }
START

/ Get the string /

Set pointer to
end of the string

:

Count = String iength
/Bisplay pointed character /

Pointer =Pointer —1
Count = Count -1

No

Yes

Microprocessor

5-9 Assembly Language Programs

Program 13 : Search numbers, alphabets, special characters

(Softcopy of this program, P20.asm is available at www.vtubooks.com)

Flowchart :

Get the string

Set alphabet counter = 0
Set number counter = 0
Set special character counter = 0

Count = Length of the string

'

Set pointer to first

Character in the string

. |
Is
Character = Number
No
Is
Character = Alphabet
No

Is

Character = Special character

[}

Increment number counter I

Yes

llncrement alphabet counter—l

Yes

h\crement special character counterl

!

Ijointer = Pointer + 1 |

Count = Count — 1

Display number counter
Display alphabet counter

Aplay special character counter/

Microprocessor

5-10 Assembly Language Programs

.MODEL SMALL
.STACK 100

TITLE

TOTAL

; (THIS PROGRAM GIVES THE TOTAL NUMBERS, ALPHABETS, SPECIAL
; CHARACTERS IN THE GIVEN STRING)

.DATA

STR1
STR2
STR3
STR4

.CODE
START:

NEXT:

INCSPC:

BUF

NUM
SpPC
ALPHA

MOV
MOV
MOV
MOV
INT
MOV
MoV
INT
MOV
INC
MOV
INC
MOV
CMP

CMP
JB
CMP

CMP

CMP
JB
CMP
JB
MOV
ADD

DAA
MOV
INC

DB 80 ; (MAX LENGTH OF ARRAY)
DB 00 ; (ACTUAL LENGTH OF ARRAY)
DB 80 DUP (0) ; (STARTING OF ARRAY)

DB 10,13, 'ENTER THE STRING:$'
DB 10,13, 'TOTAL NO:$'

DB 10,13, 'TOTAL ALPHABETS:S'

DB 10,13, 'TOTAL SPECIAL CHAR:$'

-’

DB O
DB 0
DB O
AX, @data ; [Initialise
DS, AX ; data segment]
BAH, 09H
DX, OFFSET STR1 ; Address of STR1
21H ; Display message STR1
AH, OAH
DX, OFFSET BUF ; Get address of the buffer
21H ; Input the string
BX,OFFSET BUF ; Get address of the buffer
BX ; Increment address of buffer
DL, [BX] ; Get the length of string
BX ; Get the starting of array
AL, [BX] ; Read the character
AL, 30H ; Check for special character
INCSPC ; If yes goto INCSPC
AL, 3AH ; Check for number
INCNUM ; If number goto INCNUM
AL,41H ; Check for special character
INCSPC ; If yes goto INCSPC
AL, 5BH ; Check for alphabet
INALP ; If yes goto INALP
AL, 61H ; Check for special character
INCSPC ; If yes goto INCSPC
AL, 7BH ; Check for alphabet
INALP ; If yes goto INALP
AL, SPC
AL,01H ; [INCR special character

; counter and

; adjust it to decimal]
SPC,AL
BX ; Increment pointer to point

; the next character

Microprocessor 5-11 Assembly Language Programs
DEC DL Decrement counter
JINZ NEXT
JMP DISPLY Otherwise goto DISPLY
INCNUM: MOV AL,NUM
ADD AL, 01H [Increment number counter
DAA and adjust it to decimal]
MOV NUM, AL
INC BX Increment pointer to point
the next character
DEC DL Decrement counter
JNZ NEXT If count not = 0, repeat
JMP DISPLY Otherwise goto DISPLY
INALP: MOV AL,ALPHA
ADD AL, O01H [Increment alphabet counter
DAA and adjust it to decimal]
MOV ALPHA, AL
INC BX Increment pointer to point
the next character
DEC DL Decrement counter
JNZ NEXT If count not = 0, repeat
JMP DISPLY Otherwise goto DISPLY
DISPLY: MOV DX, OFFSET STR2 Get the address of STR2
MOV AH, 09H
INT 21H Display message STR2
MOV AL, NUM Read the number count
AND AL, OF0H Get MS digit in AL rotate AL
MOV CL, 04H Four times
ROR AL,CL
ADD Al, 30H Convert to ASCII
MOV DL, AL
MoV AH, 02H Display the MS digit
INT 21H
MOV AL, NUM Read the number count
AND AL, OFH Get LS digit in AL
ADD AL, 30H Convert to ASCII
MOV DL, AL
INT 21H Display the LS digit
MOV DX, OFFSET STR3 Get address of STR3
MOV AH, 09H
INT 21H Display message STR3
MOV AL,ALPHA Read the alphabet count
AND AL, OFOH Get MS digit in AL rotate AL
MOV CL, 04H Four times
ROR AL,CL
ADD AL, 30H Convert to ASCII
MOV DL, AL ‘
MOV AH, 02H
INT 21H Display the MS digit
MOV AL,ALPHA Read the alphabet count
AND AL, OFH Get LS digit in AL

Microprocessor 5-12 Assembly Language Programs

ADD AL, 30H ; Convert to ASCII

MOV DL, AL

MOV AH, 02H

INT 21H ; Display the LS digit

MOV DX, OFFSET STR4 ; Get the address of STR4

MOV AH, 09H

INT 21H ; Display message STR4

MOV AL, SPC ; Read the special character
; count

AND AL, O0FOH ; Get MS digit in AL rotate AL

MOV CL, 04 ; Four times

ROR AL,CL

ADD AL, 30H ; Convert to ASCII

MOV DL, AL

MOV AH, 02H

INT 21H ; Display the MS digit

MOV AL, SPC ; Read the special character count

AND AL, OFH ; Get LS digit in AL

ADD AL, 30H ; Convert to ASCII

MOV DL, AL

MOV AH, 02H

INT 21H ; Display the LS digit

MOV AH, 4CH ; [Terminate and

INT 21H ; Exit to DOS]

END START

Program 14 : Program to find whether string is palindrome or not

(Softcopy of this program, P21.asm is available at www.vtubooks.com)
.MODEL SMALL

.DATA
M1 DB 10, 13, 'Enter the string : $'
M2 DB 10, 13, 'String is palindrome $'
M3 DB 10, 13, 'String is not palindrome $'
BUFF DB 80
DB 0
DB 80 DUP (0)
.CODE
START: MOV AX, @data ; [Initialise
MOV DS, AX ; data segment]
MOV AH, 0SH
MOV DX, OFFSET M1
INT 21H ; Display message Ml
MOV AH, 0AH ; Input the string
LEA DX,BUFF
INT 21H
LEA BX,BUFF+2 ; Get starting address of string
MOV CH, 00H

MOV CL,BUFF+1
MOV DI, CX

Microprocessor 5-13 Assembly Language Programs

DEC DI
SAR CL,1
MOV SI, 00H
BACK: MOV AL, [BX + DI] ;7 Get the right most character
MOV AH, [BX + SI] ; Get the left most character
CMP AL,AH ; Check for palindrome
JNZ LAST ; If not exit
DEC DI ; Decrement end pointer
INC sI1 ; Increment starting pointer
DEC CL ; Decrement counter
JNZ BACK ;7 If count not = 0, repeat
MOV AH, 09H ; Display message 2
MOV DX, OFFSET M2
INT 21H
JMP TER
LAST: MOV AH, 09H
MOV DX, OFFSET M3 ; Display message 3
INT 21H
TER: MOV AH, 4CH ; [Terminate and
INT 21H ; Exit to DOS 1}
END START

Program 15 : Program to display string in lowercase

(Softcopy of this program, P22.asm is available at www.vtubooks.com)
-MODEL SMALL

.DATA
M1 DB 10, 13, 'ENTER THE STRING : §°'
M2 DB 10, 13, 'THE LOWERCASE STRING : S’
BUFF DB 80
DB 0
DB 80 DUP (0)
.CODE
START : MOV AX, @data ; [Initialise
MOV DS, AX ; data segment]
MOV AH, 09H ; Display messagel
MOV DX, OFFSET M1
INT 21H
MOV AH, 09H
MOV DX, OFFSET M2 ; Display message M2
INT 21H
MOV AH, OAH ; Input the string
LEA DX,BUFF
INT 21H

MOV CH, 00H

Microprocessor

5-14

Assembly Language Programs

MOV
LEA
MoV
BACK : MOV
ADD
MOV
INT
INC
DEC

MOV
INT
END

CL,BUFF+1
BX,BUFF+2
DI, 00H
DL, [BX+DI]
DL, 20H
AH, 02H
21H

DI

CX

BACK

AH, 4CH
21H

START

~

’

Take character couﬁt in CX

point to the first character
convert to lowercase

Display the character

Decrement character counter
If not = 0, repeat
[Terminate and

Exit to DOS]

Program 16 : Write an 8086 assembly language program (ALP) to add
array of N number stored in the memory.

Flowchart :

(start)

Initialize counter
array pointer and sum =0

Y

Get array element

Sum = sum + array element

Increment array pointer
Decrement counter

No Is

counter=07?

Display sum

(Stop)

Microprocessor

5-15 Assembly Language Programs

Algorithm :

—
.

O XN wN

Sum =0

Stop.

Initialize counter = N
Initialize array pointer.

Display sum.

Get the array element pointed by array pointer.
Add array element in the sum.
Increment array pointer decrement counter.

Repeat steps 4, 5 and 6 until counter equal to zero.

Sum of array having HEX numbers

TITLE

PAGE

.MODEL SMALL

.DATA

ARRAY

SUM

MES
.CODE
START:

MOV

MOV
MOV
XOR

BAC:

LEA

MOV

MOV
ADD

INC
DEC
JNZ

MOV
CALL D_HEX

MOV AH,

INT

52,80

8086 ALP to find sum of numbers in the array.

DB 10H,20H, 30H, 40H, 50H, 60H, 70H, 80H, 90H, 00H

DW O
DB 10,13,

AX, @data
DS, AX
CL,10
DI, DI
BX, ARRAY
AL, [BX+DI]
AH, 00H
SUM, AX
DI

CL

BAC

AX, SUM

4CH
21H

'Sum of array elements is $'

; [Initialise

; data segment]

; Initialise counter

; Initialise pointer

; Initialise array base pointer
; Get the number

; Make higher byte 00h

; SUM SUM + number

; Increment pointer

; Decrement counter
; if not 0 go to back
; Get sum in AX

; Display sum of array

Microprocessor 5-16 Assembly Language Programs

END

Sum of array having decimal numbers

PAGE 52,80

TITLE 8086 ALP to find sum of numbers in the array.
.MODEL SMALL
.DATA

Microprocessor 5-17 Assembly Language Programs

ARRAY DB 12,24,26,63,25,86,20,33,10,35

SUM DW O
MES DB 10,13, 'Sum of array elements is : §$°'
.CODE
START: MOV AX, @data ; [Initialise
MOV DS, AX ; data segment]
MOV CL, 10 ; Initialise counter
XOR DI,DI ; Initialise pointer
LEA BX, ARRAY ; Initialise array base pointer
BAC: MOV AL, [BX+DI] ; Get the number
MOV AH, 00H ; Make higher byte 00h
ADD SUM, AX ;7 SUM = SUM + number
INC DI ; Increment pointer
DEC CL ; Decrement counter
uNZ BAC ; if not 0 go to back
MOV AX, SUM ; Get the result
CALL ATB4D ; Display sum of array
MOV AH, 4CH
INT 21H

ATB4D PROC NEAR

PUSH DX ; Save registers

PUSH CX

PUSH BX

PUSH AX

MOV CX, 0 ; Clear digit counter

MoV BX, 10 ; Load 10 decimal in BX
BACK : MoV DX, O ; Clear DX

DIV BX ; divide DX : AX by 10

PUSH DX ; Save remainder

INC CX ; Counter remainder

OR AX, AX ; test if quotient equal to zero

JNZ BACK ; if not zero divide again

MOV AH, O02H ; load function number

Microprocessor 5-18 Assembly Language Programs
DISP: POP DX ; get remainder

ADD DL, 30H ; Convert to ASCII

INT 21H ; display digit

LOOP DISP

POP AX ; Restore registers

POP BX

POP CX

POP DX

RET

ENDP

END
Program 17 Write 8086 ALP to perform non-overlapped and

overlapped block transfer.

In non-overiapped block transfer, source block and destination blocks are different.
Here, we can transfer byte-by-byte or word-by-word data from one block to another block.

Algorithm :

1.

®© N o Uk WD

Initialize counter.

Initialize source block pointer.
Initialize destination block pointer.

Get the byte from source block.
Store the byte in the destination block.

Increment source, destination pointers and decrement counter.

Repeat steps 4, 5 and 6 unit counter equal to zero.

Stop.

Microprocessor 5-19 Assembly Language Programs

Flowchart :

(sStart)

Initialize counter
Initialize source block pointer
Initialize destination block pointar

Get byte from
source block

Store byte in the
destination block

Y

Increment source block pointer
Increment destination block pointer
decrement counter

Non-overlapped block transfer
PAGE 52,80
TITLE Non overlapped block transfer.
.MODEL SMALL

.STACK 100
.DATA
ARRAY DB 12H,23H,26H,63H,25H,86H, 2FH, 33H, 10H, 35H
NEW_ARR DB 10 DUP (?)
.CODE
START: MOV AX, @data ; [Initialise
MOV DS, AX ; data segment and
MOV ES, AX ; extra segment]
MOV CX,10 ; Initialise counter

LEA SI,ARRAY ; Initialise source pointer

Microprocessor 5-20 Assembly Language Programs
LEA DI,NEW_ARR ; Initialise destination pointer
CLD ; Clear direction flag to
; autoincrement SI and DI
MOV AL, [SI] ; [Get the number
MOV [DI],AL ; and save number in new array |
REP MOVSB : Decrement CX and MOVSB until CX
will be O
LEA DI,NEW_ARR ; Initialise destination_pointer
MOV CX,10 ; Initialize counter
BACK1: MOV AH, [DI] ; Get number
CALL D_HEX2 ; Display number
CALL SPACE ; Display space
INC DI ; Increment destination_pointer
LOOP BACK1 ; if counter not zero, repeat
MOV AH, 4CH ; Return to DOS
INT 21H

Microprocessor 5-21 Assembly Language Programs

SPACE PROC NEAR

PUSH AX ; Save registers

PUSH DX

MoV AH, 02 ; Display space

MOV DL,' '

INT 21H

POP DX ; restore registers

POP AX

RET ; return to main program
ENDP

END

Overlapped block transfer

We call two blocks are overlapped when some portion of source and destination
blocks are common. As shown in the Fig. 5.1, source and destination blocks can be
overlapped in two ways. In first case Fig. 5.1 (a) we can begin transfer from starting
location of source block to the starting location of destination block, ie.
[20000H] « [20005H]

2000EH end

20009H

20009H

20005H 20005H

' start 20000H KL

(a (b)

Fig. 5.1

We can then increment source and destination block pointers and carry on byte
transfer until the pointers reach the end of two blocks, ie. upto
[20009H] « [2000EH].

In second case Fig. 5.1 (b) we cannot use the same block transfer procedure, because
there will be over writing of data within the source block, i.e. at first byte transfer contents
of 20000H will be over written in the location 20005H and data at 20005H in the source
biock get lost. To avoid over writing in such cases we have to transfer data from source

Microprocessor 5-22 Assembly Language Programs

block to destination block from the end of the block, i.e. we have to begin with the
transfer [2000EH] « [20009H], decrement the source and destination pointers and carry on
the byte transfer until the pointer reach the start of the blocks, ie. upto
[20005H] «- [20000H]
PAGE 52,80
TITLE Overlapped block transfer.
.MODEL SMALL

.STACK 100
.DATA
ARRAY DB,lZH,23H,26H,63H,25H,86H,2FH,33H,10H,35H,?,?,?,?,?

.CODE

START: MOV AX, @data ; [Initialise
MOV DS,AX ; data segment and
MOV ES,AX ; extra segment]
MOV CX, 10 ; Initialise counter
LEA SI,ARRAY+O ; Initialise source pointer
LEA DI,ARRAY+14 ; Initialise destination_pointer
STD ; SET direction flag to

autodecrement SI and DI
MOV AL, [SI] ; Get the number
MoV [DI],AL ; and save number in new array]
REP MOVSB : Decrement CX and MOVSB until
; CX will be O

LEA DI,ARRAY+5 ; Initialise destination pointer
MOV CX,10 ; Initialize counter

BACKl: MOV AH, [DI] ; Get number "
CALL D_HEX2 ; Display number
CALL SPACE ; Display space
INC DI ; Increment destination_pointer
LOOP BACK1 ; If counter not zero repeat
MOV AH, 4CH ; Return to DOS

INT 21H

Microprocessor 5-23 Assembly Language Programs

D HEX? PROC NEAR

SPACE PROC NEAR

PUSH AX ; save registers

PUSH DX

MOV AH, 02 ; display space

MOV DL,"' '

INT 21H

pPOP DX ; restore registers

POP AX

RET ; return to main program
ENDP

END

Program 18 : Write 8086 ALP to find and count negative numbers
from the array of signed numbers stored in memory.

In sign number representation, number is called negative when its most significant bit
(MSB) is 1. This bit can be checked by masking all other bits with the help of logical AND
instruction.

Microprocessor 5-24 Assembly Language Programs

Algorithm :

Initialize counter.

Initialize array pointer.

Initialize negative number count.

Get the number.

Check sign of number by checking its MSB. If negative increment negative number
count and display the number.

Decrement counter and increment array pointer.

Repeat steps 4, 5 and 6 until counter equal to zero.

Display negative number count.

ANl A

o ® N

Stop.
Flowchart :

Start

i

Initialize counter, array
pointer and negative number count

\
[Get the number J

:

r Display number I

!

Increment negative number No
count

Increment array pointer
Decrement counter

Display negative
number count

(Stop)

Microprocessor

5-25 Assembly Language Programs

PAGE 52,80
TITLE Find and count the negative numbers in the array.
.MODEL SMALL
.STACK 100
.DATA
ARRAY DB 92H, 23H, 96H, OA3H, 25H, 86H, 2FH, 33H, 10H, 35H
MES DB 10,13, 'Negative numbers are : §$'
MES1 DB 10,13, 'Total Negative number count is : §$'
.CODE
START: MOV AX, @data ; [Initialise
MOV DS, AX ; data segment]
MOV CX,10 ; Initialise counter
MOV BH, 0 ; Initialise negative number count
equal to 0
LEA BP, ARRAY i/ Initialise array base pointer
LEA DX, MES
MoV AH, 09H
INT 21H
BACK: MOV AL, DS: [BP] ; Get the number
MOV AH, AL ; Save number in AH
AND AL, 80H ; Mask all bits except MSB
Jz NEXT ; If MSB = 0 go to next
CALL D HEX2 ; Otherwise display number
CALL SPACE
INC BH ; Increment negative number count
NEXT : INC BP ; Increment array base pointer
LOOP BACK ; Decrement counter
; 1f not 0 go to back
LEA DX, MES1
MOV AH, O0S%H
INT 21H
MOV AH, 02H
ADD BH, 30H
MOV DL, BH
INT 21H
MOV AH, 4CH ; [Exit
INT 21H ; to DOS]

Microprocessor 5-26 Assembly Language Programs

ENDP

SPACE PROC NEAR
PUSH AX ; save AX
MOV AH, 02H ; [Call DOS routine
MOV DL, ' '’ ; to leave space |
INT 21H ; restore AX
POP AX ; return to main program
RET
ENDP
END

Program 19 : Convert BCD to HEX and HEX to BCD

Write 8086 ALP to convert 4-digit HEX number into its equivalent BCD number and
5-digit BCD number into its equivalent HEX number. Make your program user friendly to
accept the choices from user for :

a. HEX to BCD

b. BCD to HEX

c. EXIT

Display proper strings to prompt the user while accepting the input and displaying the
result.

Microprocessor 5-27 Assembly Language Programs

In this program we use the standard routines explained in the chapter 3 to convert
data from one form to other. However, to select the conversion we display menu on the
screen and display proper messages on the screen to guide user. Therefore, in this
program separate macro named PROMPT is written for display the message. After
accepting the option from the user, the option is checked and proper routine is called to
perform desired operation.

Algorithm :

1. Display menu
a. HEX To BCD
b. BCD To HEX
c. EXIT
ENTER THE CHOICE :
2. Read the option
It option is 3-exit
1 - Do HEX to BCD conversion
2 - Do BCD to HEX conversion

3. Stop

Display menu
1. HEX to BCD
2. BCD to HEX
3. EXIT

Read option

Flowchart :

CALL HTB -

option=1

CALL BTH

Microprocessor 5-28 Assembly Language Programs

PROMPT MACRO MESSAGE ; Define macro with MESSAGE as a
; parameter
PUSH AX ; Save AX register
MOV AH, OSH ; display message
LEA DX, MESSAGE
INT 21H
POP AX ; restore register
ENDM
.MODEL SMALL ; select small model
.STACK 100
.DATA ; start data segment
MES1 DB 10, 13, 'l. HEX TO BCD §'
MES2 DB 10, 13, '2. BCD TO HEX $
MES3 DB 10, 13, '3. EXIT §'
MES4 DB 10, 13, 'ENTER THE CHOICE : s’
MESS5 DB 10, 13, 'ENTER CORRECT CHOICE : S
MES6 DB 10, 13,'S$’
MES7 DB 10, 13, 'ENTER THE FOUR DIGIT HEX NUMBER : §'
MES8 DB 10, 13, 'EQUIVALENT BCD NUMBER IS : S’
MES9 DB 10, 13, 'ENTER THE BCD NUMBER : $'

MES10 DB 10, 13, 'EQUIVALENT HEX NUMBER IS : $!

NUMBER DW ? define NUMBER

~e

.CODE ; start code segment
START: MOV AX, @DATA ; [Initialize
MOV DS, AX ; data segment]

PROMPT MES1

~

Display MES1
PROMPT MES2 Display MES2
PROMPT MES3 Display MES3
PROMPT MES4 ; Display MES4

~

~

Microprocessor 5-29 Assembly Language Programs
AGAIN: MOV AH, 01 ; [READ
INT 21H ; OPTION]
PROMPT MES6 ; Display MES6
CMP - AL,'3' ; [If choice is 3
JZ LAST ; exit]
CMP AL,'1"’ ; If choice is 1
JNZ NEXT1
CALL HTB ; Do HEX to BCD conversion
JMP LAST ; exit]
NEXT1: CMP AL,'2’ ; [If choice is 2
JINZ NEXT2 -
CALL BTH H Do BCD to HEX conversion
JMP LAST ; exit]
NEXT2: PROMPT MESS5 ; Display MESS
JMP AGAIN
]
LAST: MOV AH, 4CH ; Return to DOS
INT 21H

HTB PROC NEAR

PROMPT MES7
CALL R_HEX
PROMPT MESS8
CALL D BCD

RET
ENDP

Microprocessor 5-30 Assembly Language Programs

Microprocessor 5.31 Assembly Language Programs

Clear dig:

Load 10 decimal in BX
"} Clear DX :

Microprocessor 5-32 Assembly Language Programs

Program 20 : Multiplication of two 8-bit numbers

Algorithm :
1. Read 2-digit hex number as a multiplicand.
2. Read 2-digit hex number as a multiplier.
3. Initialize iteration count = 8 since multiplier is 8-bit.
4. Make result = 0.
5. Shift result left by 1-bit.
6. Rotate multiplier 1-bit to check current MSB if bit is 1, Add multiplicand in the

result.
7. Decrement iteration count and repeat steps 5 and 6 fill iteration count is zero.
8. Display result.
9. Stop.

